
FIDA: a framework to automatically integrate
FPGA kernels within Data-Science applications

L. Stornaiuolo, A. Parravicini, D. Sciuto, M. D. Santambrogio

Politecnico di Milano, Milan, Italy

alberto.parravicini@mail.polimi.it,

{luca.stornaiuolo, donatella.sciuto, marco.santambrogio}@polimi.it

Abstract—Hardware accelerators are an effective solution to
increase the performance of algorithms in a wide array of
disciplines, from data science to computational finance. However,
data scientists and mathematicians often do not have the required
knowledge or time to fully exploit these accelerators, and they
perceive them as difficult and frustrating to use. OpenCL was
created to simplify the creation of computational pipelines with
heterogeneous hardware, but as of today, its integration with
high-level languages commonly used in data science is limited.
In this paper, we propose a framework to integrate OpenCL
kernels running on Field Programmable Gate Arrays (FPGAs)
with Python, R, and MATLAB, the most common languages used
in data science. Our framework can automatically generate all
the interfaces needed to wrap an OpenCL kernel into these high-
level languages and provide the user with a transparent access
to the kernel itself.

I. INTRODUCTION

Heterogeneous System Architectures (HSAs) are being seen

with more and more interest, as the computational pipelines

used in fields such as data science and computational finance

demand high performance, low latency and low power con-

sumption.

To meet these requirements, many different tools and hard-

ware solutions have been proposed by academia and industry

[1]. Among the available solutions, FPGAs can be configured

to provide high parallelism and throughput but can be difficult

and cumbersome to program. FPGA vendors such as Xilinx

have been trying to lower the barrier to access to hardware

acceleration. These companies provide tools that allow the

user to accelerate their algorithms by writing computational

kernels in C, and make available libraries of kernels that have

already been built for their systems.

As an example, Xilinx SDx simplifies FPGA programming

by providing PCI-Express (PCIe) drivers and an OpenCL

runtime that the host-side software can leverage to control

the hardware accelerator. However, fully integrating FPGA

kernels in the computational pipelines can be a tedious and

error-prone task, due to the large number of steps required to

connect these kernels to high-level languages such as Python,

R, and MATLAB which are popular amongst data scientists.

Starting from our previous work [2], we propose a frame-

work that aims at fully automatizing the integration of FPGA

kernels into Python, R, and MATLAB, starting from a simple

description of the inputs and outputs of the kernel.

Compared to our previous results, we leverage Xilinx SDx

to produce the PCIe drivers required to connect the FPGA

to the host system, and we extend the framework to include

Python and MATLAB.

More in detail, we present the following contributions:

• The automatic generation of the OpenCL host file that

controls an FPGA kernel to be integrated (Section III).

• The automatic generation of the interfaces that trans-

parently connect the OpenCL host to Python, R, and

MATLAB.

• How to leverage our framework in order to minimize

the computational overhead in the overall pipeline (Sec-

tion IV).

II. RELATED WORK

The fields of data science and computational finance are

characterized by strict performance requirements. It is often

demanded to minimize the execution times and at the same

time to provide consistent latency. The innate parallelism of

the computational tasks performed in these fields guided the

users towards architectures such as Graphics Processing Unit

(GPU) and FPGA.

To easily leverage these architectures, different frameworks

have been proposed. GPUs have been widely adopted in scien-

tific computing since the introduction of CUDA by NVIDIA

[3]. Thanks to their performance in data parallel tasks, GPUs

have been quickly integrated into libraries and programming

languages in a way that is fully transparent to the users. As

an example, MATLAB seamlessly supports GPU acceleration

by using gpuArrays()[4], and Python offers similar capabilities

using PyCUDA[5].

FPGA vendors have been trying to provide a similar level of

abstraction, by exploiting the OpenCL framework in the pro-

gramming of computational kernels and of the host software

[6]. Moreover, there exist already OpenCL libraries written

for Python [7], R [8] and even MATLAB [9]. All these

libraries, however, have a different syntax, and they are not

straightforward wrappers. They rely on the user to write a large

amount of boilerplate code to setup the accelerator and handle

the data transfer, while our framework completely abstracts

these steps from the final user.

Other recent works have been focused on the integration

of Domain Specific Languages (DSLs) with FPGAs [10], by

building a common backend which enables the DSL compiler

198

2018 IEEE International Parallel and Distributed Processing Symposium Workshops

978-1-5386-5555-9/18/$31.00 ©2018 IEEE
DOI 10.1109/IPDPSW.2018.00037

to target FPGA architectures. This approach is different from

ours as it operates directly on the Abstract Syntax Tree of

the code, instead of wrapping an existing OpenCL kernel.

The advantage of our framework is that it is completely

vendor and platform agnostic. The framework can be applied

to different architectures with minimal effort, as long as an

OpenCL compiler is available;

Python R MATLAB

Unified FIFO Interface

OpenCL Host File

FPGA

PCIe

Output
FIFO

Input
FIFO

MEXRcppBoost

Fig. 1. Scheme of the proposed framework. The upper box represents the
high-level language module, while the lower box represents the OpenCL/F-
PGA module. The two modules are connected by using FIFO buffers.

III. PROPOSED APPROACH

The main goal of our framework is to enable a user to

automatically generate the interfaces of an OpenCL kernel to

the most common high-level languages used in data science.

We focused on Python, R, and MATLAB, which are often the

languages of choice of data scientist, quantitative analysts and

computational statisticians [11].

From a description of the inputs and outputs of the kernel

(Listing 1), in terms of structure (scalar or array) and type (int,

float, etc. . .), our framework is able to automatically generate

all the interfaces required to connect the kernel to the high-

level languages.

We focused on FPGA C/C++ kernels written following the

OpenCL paradigm, optimized by Vivado HLS, and compiled

with the OpenCL compiler provided within the Xilinx SDAc-

cel workflow. The framework also works with kernels written

in Hardware Description Language (HDL) like Verilog and

VHDL, or with the Xilinx OpenCL libraries.

Moreover, the framework can wrap kernels that behave as

black-boxes, and for which only the input/output specifics are

known (which is usually the case for kernels that are sold

commercially). A strong point of our work is that it can

be used to interface kernels that run either on CPUs, GPUs

and FPGAs making it highly flexible to many different HSA

systems.

Listing 1. Example of kernel description

{
"kernel_name": "mmult",
"board": ["xilinx_adm-pcie-7v3_1ddr_3_0"],
"xclbin": ["kernel_7v3.xclbin"],
"num_iterations": 3,
"inputs": [

{"type": "array",
"name": "a",
"length": 256,
"class": "int",
"position": 0},

{"type": "array",
"name": "b",
"length":256,
"class": "int",
"position": 1}],

"outputs": [

{"type": "array",
"name": "c",
"length":256,
"class": "int",
"position": 2}]

}

The structure of the framework can be divided into two main

modules (Figure 1). The first module represents the OpenCL

host interface, the software that controls the accelerator and

the kernel itself. The second module is used to connect the

high-level languages to the host interface, by using language

specific libraries and tools. The two modules are connected by

a streaming interface based on named pipes, created in Linux

through mkfifo.

A. Low-Level Module

The low-level module of our framework is composed by the

computational kernel which is wrapped in the user application,

and by an OpenCL host file that manages the kernel. The

kernel is compiled by an OpenCL compiler, and all the

platforms supported by the OpenCL standard can be used.

The input/output specifics of the kernel are described with a

small configuration file, that is used by the framework to build

the interfaces.

The OpenCL runtime provided by the host file configures

and manages the FPGA, and launches the kernel whenever

the required data are available. The host file is unique and

independent from the high-level language chosen by the user,

and it requires recompilation only if the target accelerator or

the target kernel are changed.

B. High-Level Module

The high-level module gives the user the ability to call the

OpenCL kernel directly from Python, R or MATLAB, without

199

having to manually configure the FPGA or handling the data

transfer. The upper portion of the module is used to convert the

data of high-level languages to the types and data structures

that can be processed by OpenCL and by the FPGA kernel.

This is accomplished by making use of different libraries,

depending on the language that is considered.

In the case of Python, we make use of the Boost.Python[12]

library, which allows wrapping of C/C++ function and classes

in modules that can be imported and invoked from Python.

The structure of the module itself is independent from

the target kernel, but arrays have to be converted from

boost::python::list to standard C arrays before being

sent to the OpenCL host.

R allows to compile and execute C++ functions through

the Rcpp package [13], and invoke them like traditional R

functions. As in the case of Python, R data-types must be

converted to regular C/C++ types (e.g. arrays of integers

become IntegerVectors), both when sending and receiving data

from the FPGA. The conversion is handled by R’s C interface

[14], which casts the subtypes of defined R data type to default

C++ types.

In MATLAB, the interface with C is implemented through

MEX files [15]. MEX files are dynamically linked subroutines

executed by MATLAB as if they were built-in functions.

MATLAB is optimized to work on floating point numbers and

doesn’t offer full support to integer numbers. However, we can

cast floating point numbers to integers if the OpenCL kernel

demands so.

These modules convert the data to the appropriate data

types, and then call a language-independent function that is

connected to the OpenCL by the named pipes. This function

will send and receive the data through the named pipes.

The two modules are connected by using named pipes. Our

framework uses one input and one output pipe, which are

created and managed by the OpenCL host. After completing

the FPGA reconfiguration, the host waits for data to be sent by

an application on the input pipe, and will return the results to

the output pipe. If desired, the user can require the host to run

in a server-like mode, meaning that the host will remain active

after having processed the data, so that new data can be sent

and processed. This optimization allows to mask the FPGA

reconfiguration time, and drastically reduce the execution time

overheads for a kernel that is repeatedly invoked by the user

application.

It should be noted that our framework doesn’t introduce any

additional hardware resource utilization compared to a hand-

crafted OpenCL implementation.

IV. EXPERIMENTAL EVALUATION

To analyze the impact of our framework on the performance

of a computational pipeline, we have conducted several tests.

Our focus was mainly on measuring the overheads of the

data-type casting and data transfer that are introduced by our

framework, and to understand which part of the interface has

the highest impact. The overall execution time of an OpenCL

kernel wrapped with our framework can be decomposed into

several steps, for which we have measured the relative impact.

More specifically, we considered the time required to program

the FPGA, the time required to convert the input (and output)

from the data-types used by the high level languages to the

types used by OpenCL, the time used to send the data through

the named pipes, the time used to transfer the data from the

host machine memory to the FPGA memory, and finally the

time taken by the FPGA computation itself.

We have considered two simple OpenCL kernels which

are used in numerous disciplines and which can benefit from

FPGA acceleration.

A. Integer Matrix Multiplication

We implemented a 16×16 integer matrix product, in which

the matrices are sent to the kernel as one-dimensional buffers

and multiplied by taking advantage of hardware pipelining.

The input matrices are sent to the kernel from the input named

pipe, and the output matrix is retrieved through the output

named pipe.

B. Variance

The variance of an input signal is computed in an extremely

efficient way by the FPGA, through hardware pipelining and

tree reductions to perform multiply-and-accumulate operations

in a single clock cycle. By also introducing parallel reads

from the input, the main computation can be performed in a

number of cycles lower than the input size, not counting the

cycles needed to transfer the signal to the FPGA memory.

The input signal was a 10000-long float vector.

We have tested the framework using a Xilinx Virtex-7 FPGA

connected through PCIe. The FPGA was mounted on a host

machine which contains an Intel i7 870 CPU at 2.93GHz and

8GB of RAM. The host machine was also used to compare the

execution times of the FPGA with respect to using the CPU

exclusively.

We measured the execution times of both kernels using the

interfaces in three high-level languages that we support and

compared our results with the execution time obtained by the

respective built-in functions.

It is possible to see (Figure 2) that the R interface performs

slightly faster, while Python and MATLAB have similar ex-

ecution times. The overhead, due to data-types casting and

input/output transfer plays a significant cost in the overall

execution time.

To get a better understanding of the overhead of each step in

the pipeline we decomposed the overall execution time into the

individual steps that are present in the framework (Figure 3).

We measure the time from the start of the input transfer to the

end of the output transfer, thus including the overhead added

by our interface. As the board can be programmed before

starting the computation and kept running waiting for data

to be processed, we measured the executions times without

considering the FPGA reconfiguration time. This analysis was

done for both of the OpenCL kernels we tested, as they have

different input types and sizes. We can see how transferring

data from the application to the host using named pipes

200

Fig. 2. Execution time of the mmult and variance kernels, with highlighted
the overheads of the interfaces in each supported language.

Fig. 3. Time subdivision across the different steps of the computation. The
times considered are taken from the Python interface.

has a significant time cost, while the actual kernel execution

is extremely fast. As a consequence, it might preferable to

accelerate kernels in which the computation plays a significant

cost, compared to the data transfer.

V. CONCLUSIONS

In this paper, we have proposed a framework to facilitate the

integration of OpenCL kernels into computational pipelines

written in common high-level languages such as Python,

R, and MATLAB, by providing the automatic creation of

interfaces that take care of data conversion, data transfer and

of the runtime management of the kernel. At the moment the

overhead introduced by our framework prevent the accelera-

tion of kernels that do not have a significant execution time.

However, most of the overhead is caused by the disk accesses

introduced by named pipes. Using shared memory for inter-

process communication between the user application and the

host process would significantly reduce transfer overhead, as

shown in [16].

We believe that our work can trivially be extended to

support GPUs and other hardware accelerators which offers

an OpenCL compiler, to provide even higher flexibility to

the users. Moreover, we would like to deploy our solution on

the AmazonWeb Services (AWS) EC2 F1 compute instances,

which support high-end FPGAs and would allow the users

to accelerate their computation without the need to own and

install an FPGA.

Another extension that we plan to implement is to support

OpenCL hosts that can run multiple kernels in the same

pipeline, as long as the board does have enough resources,

in order to reduce the reconfiguration time overheads.

REFERENCES

[1] K. H. Tsoi and W. Luk, “Axel: a heterogeneous cluster with fpgas and
gpus,” in Proceedings of the 18th annual ACM/SIGDA international
symposium on Field programmable gate arrays. ACM, 2010, pp. 115–
124.

[2] L. Stornaiuolo, A. Parravicini, G. Durelli, and M. Santambrogio,
“Exploiting fpgas from higher level languages a signal analysis case
study,” in Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 2017 IEEE International. IEEE, 2017, pp. 132–140.

[3] NVIDIA, “CUDA Parallel Computing Platform.” [Online]. Available:
http://www.nvidia.com/object/cuda home new.html

[4] MathWorks, “Parallel Computing Toolbox.” [Online]. Available:
http://mathworks.com/products/parallel-computing/

[5] Nvidia, “PyCUDA.” [Online]. Available: https://developer.nvidia.com/
pycuda

[6] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming
standard for heterogeneous computing systems,” Computing in science
& engineering, vol. 12, no. 3, pp. 66–73, 2010.

[7] A. Klöckner, “Pycuda: Even simpler gpu programming with python.”
[8] S. Urbanek, “Opencl: Interface allowing r to use opencl.”
[9] J. Radford, “Opencl toolbox v0.17.” [On-

line]. Available: https://it.mathworks.com/matlabcentral/fileexchange/
30109-opencl-toolbox-v0-17

[10] E. Del Sozzo, R. Baghdadi, S. Amarasinghe, and M. D. Santambrogio,
“A common backend for hardware acceleration on fpga,” in 2017 IEEE
35th International Conference on Computer Design (ICCD). IEEE,
2017, pp. 427–430.

[11] J.-F. Puget, “The most popular language for machine learning and data
science is” [Online]. Available: https://www.kdnuggets.com/2017/
01/most-popular-language-machine-learning-data-science.html

[12] D. Abrahams and R. W. Grosse-Kunstleve, “Building hybrid systems
with boost. python,” CC Plus Plus Users Journal, vol. 21, no. 7, pp.
29–36, 2003.

[13] C. R-project, “Rcpp: Seamless R and C++ Integration.” [Online].
Available: https://cran.r-project.org/web/packages/Rcpp/index.html

[14] A. R. by Hadley Wickham, “R’s C interface.” [Online]. Available:
http://adv-r.had.co.nz/C-interface.html

[15] MathWorks, “Mex file creation api.” [Online]. Available: https:
//it.mathworks.com/help/matlab/call-mex-files-1.html

[16] A. Venkataraman and K. K. Jagadeesha, “Evaluation of inter-process
communication mechanisms,” Architecture, vol. 86, p. 64.

201

