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ABSTRACT
Entity Linking, the task of mapping ambiguous Named Entities to
unique identifiers in a knowledge base, is a cornerstone of multiple
Information Retrieval and Text Analysis systems. So far, no single
entity linking algorithm has been able to offer the accuracy and
scalability required to deal with the ever-increasing amount of data
in the web and become a de-facto standard.

In this paper, we propose a framework for entity linking that
leverages graph embeddings to perform collective disambiguation.
This framework is modular as it supports pluggable algorithms for
embedding generation and candidate ranking. With our framework,
we implement and evaluate a reference pipeline that uses DBpedia
as knowledge base and leverages specific algorithms for fast candi-
date search and high-performance state-space search optimization.
Compared to existing solutions, our approach offers state-of-the-art
accuracy on a variety of datasets without any supervised training
and provides real-time execution even when processing documents
with dozens of Named Entities. Lastly, the flexibility of our frame-
work allows adapting to a multitude of scenarios by balancing
accuracy and execution time.

CCS CONCEPTS
• Mathematics of computing → Graph algorithms; • Infor-
mation systems→ Information extraction; •Computingmethod-
ologies → Information extraction; Unsupervised learning.
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“The Indiana Pacers and Miami Heat [...] meet at Miami's American Airlines Arena”

en.wikipedia.org/wiki/Indiana_Pacers

en.wikipedia.org/wiki/Miami_Heat

en.wikipedia.org/wiki/Miami

.../wiki/American_Airlines_Arena

Figure 1: An example of Entity Linking where eachmention
in the original sentence is connected to a URI.

1 INTRODUCTION
Entity Linking (EL), sometimes called Named Entity Disambigua-
tion (NED), is the task of mapping words of interest (usually named
entities, e.g., names of persons, locations, companies, etc...) from
an input text to corresponding unique entities - called Uniform
Resource Identifiers (URIs) - in a target knowledge base. Being able
to uniquely identify entities contained in a text is critical in many
fields of application, such as text analysis, recommender systems,
semantic search and chatbots. All of these fields benefit from high-
level representations of the text, in which concepts relevant to the
application are separated from noisy text.

1.1 Motivations
Entity linking is a deceptively simple task but over the years none
of the multiple approaches, proposed in the literature, managed
to become a de-facto standard [9, 11, 27, 29]. Indeed, there are
several subtle challenges in the entity linking task (see fig. 1 for an
example). For example, the words to be linked, known as mentions
or surface forms, are often ambiguous if considered by themselves.
For example, "Zeppelin" might refer to an airship, to the famous
band Led Zeppelin, or to the Apache Zeppelin software. In order
to correctly link such ambiguous mentions, the key is to consider
the context. By leveraging the relationships in a Knowledge Base
(KB), one can derive that "Led Zeppelin" relates to hard rock and the
70s, while the Zeppelin airship or the Apache Zeppelin would have
significantly different relationships and thus appear in different
contexts.

Another challenge for a practical entity linking system is to
provide the results with a low latency, often in real-time. This re-
quirement is very challenging when using large knowledge-bases,
even when processing documents of moderate size. For example,
using Wikipedia as the KB means analyzing nearly 9 million en-
tities and around 165 million relationships. Next, a news article
might contain dozens of mentions that need to be collectively dis-
ambiguated, leading to an enormous search space for the correct
URIs.
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Existing EL algorithms are optimized for single tasks or domains,
such as web pages [9] or social media posts [3], and are unable to
offer accuracy, scalability and low latency under highly variable
conditions encountered in real-life applications.

1.2 Contributions
In this paper, we propose a novel EL algorithmic framework that
combines neural graph embeddings with state-space search opti-
mization. Our framework is composed of different building blocks
that can be configured and tuned. We leverage this framework to
design and evaluate an EL pipeline that uses DBpedia as the KB
and can handle large documents.

Our approach, to the best of our knowledge, is the first to employ
a graph representation based on neural embeddings to perform en-
tity linking. Representing graphs with embeddings allows encoding
in a low-dimensional space the complex topological relationships
that exist among entities in the graph. Moreover, it is possible to
encode in a unified way heterogeneous properties, such as textual
labels, statistical measures, and other handcrafted features. We pro-
pose a novel method to exploit vertex embeddings to measure the
degree of coherence, and thus the quality of an EL candidate.

Since an exhaustive evaluation of all possible combinations of
the candidate URIs is computationally infeasible, we devise a novel
state-space search optimization method to efficiently obtain high-
quality candidate solutions, which convergeswith a high probability
to the optimal possible solution or very close to it. Compared to
traditional algorithms such as Personalized PageRank (PPR), this
approach allows scaling our entity linking algorithm to large docu-
ments (with dozens of mentions) while exploiting the larger context
they offer and providing high-quality linked entities to the end user.

2 RELATEDWORK
Entity Linking (EL) has been a hot topic in industry and academia
for the last decade. However, as of today a large number of chal-
lenges are still open [13], and many Entity Linking systems, with
widely different strengths and weaknesses, have been proposed.

Modern Entity Linking systems can be divided into two cat-
egories: text-based approaches that make use of textual features
extracted from large text corpora (e.g. word co-occurrence proba-
bilities), and graph-based approaches that exploit the structure of
Knowledge Graphs (KGs) to represent the relation of entities.

Among the most relevant text-based Entity Linking algorithms,
Rao et al. [23] propose a two-step algorithm to link Named Entitys
(NEs) to entities in a target Knowledge Base (KB). First, a set of
candidate entities is chosen using string matching, acronyms, and
known aliases. The best link among the candidates is chosen with a
ranking Support Vector Machine (SVM) that uses linguistic features.
The ideas presented in this paper, such as the initial candidate finder
and the ranking SVM have seen usage in many other algorithms.

Modern Entity Linking systems do not limit their analysis to tex-
tual features generated from input documents or text corpora, but
employ large KGs created from KBs such as Wikipedia. These sys-
tems extract complex features which take advantage of the KG topol-
ogy, or leverage multi-step connections between entities, which
would be hidden by simple text analysis. Moreover, it is inherently
difficult to create Entity Linking systems based onNatural Language

“Trump will answer Clinton about the Wall”

Trump,
PER,
0

Clinton,
PER,
3

Wall,
LOC,
7

TEXT:
TYPE:

OFFSET:

Step 1: NER

Preprocessing:
Embeddings Learning

Knowledge Graph

Step 2: 
Candidates Finder

Step 3: 
Collective
Disambiguation

.../wiki/Donald_Trump

.../wiki/Hillary_Clinton

.../wiki/Mexico–United_States_barrier

Figure 2: The building blocks of our EL pipeline
In the Knowledge Graph (KG), disambiguation and redirection links
are highlighted in red. They are treated as directional links by the

candidate finder.

Processing (NLP) as it requires large text corpora or hand-crafted
grammar rules that can hardly capture the complexity of language.

Han et al. are credited for the first Entity Linking system to
employ a KG representation [9]. They propose the creation of a dis-
ambiguation graph (a subgraph of the KB which contains candidate
entities). This graph is employed for a purely collective ranking
procedure that finds the best candidate link for each mention.

Another famous EL approach is AIDA [11], which uses a greedy
algorithm that identifies coherent mentions on a dense subgraph
by considering context similarities and vertex importance features.

Alhelbawy et al. [1] are the first to employ PageRank (PR) to
perform collective Entity Linking on a disambiguation graph.

Personalized PageRank (PPR) has also been employed in Entity
Linking by Pershina et al. [21]. This approach computes PPR scores
starting from each candidate vertex to find for each mention the
candidate that is most coherent to the other mentions’ candidates.
This algorithm provides good results, but running PPR from each
candidate vertex is excessively time-consuming. We experimented



with a similar strategy and decided to move to the approximated
computation presented in this paper to provide faster computation.

Representing Wikipedia entities with embeddings has become
rather common in recent EL algorithms: the approach by Zwickl-
bauer et al. performs a multi-step disambiguation procedure that
leverages PR on a disambiguation graph enriched with textual
embeddings created from Wikipedia pages. This fairly complex al-
gorithm makes use of hand-made heuristics, but it improves results
on a number of a datasets thanks to the use of textual embeddings.

Among industrial solutions, IBM [2] proposed in 2016 a frame-
work for entity linking that employs a declarative language and
logical constraints. Google is also active in the field of entity linking,
as in 2013 they released a large dataset extracted from Wikipedia
which can be used for testing or model training1. It is known from
[12] that they employ approximate Bayesian inference through
Gibbs Sampling, and they also incorporate statistical information
extracted from the Wikipedia graph.

3 PROBLEM STATEMENT
Entity Linking (EL) is the task of finding the correct relationship
between a textual surface form, called mention, and the entities of
a Knowledge Base (KB). Usually, an input document contains more
than a mention (for example, multiple names of cities, persons,
companies,. . . ). In this case, it is common to link all the mentions
at once. Indeed, mentions appearing in the same sentence or para-
graph are often related, and a good EL algorithm can disambiguate
these mentions by mapping this relatedness to the rich semantic
connections of the target KB.

More formally, given a list of textualmentions (M0, M1, . . . , MN ),
each mention Mi has a list of candidates (Ci1, Ci2, . . . , CiK ),
which represent possible target entities in the KB. K might be
different for different mentions. A candidate solution is a tuple
(C1i , C2j , . . . , CNq ), with C1i , C2j , . . . being candidate vertices
taken from the candidate set of each mention. Candidates are ob-
tained by computing the string similarity of mentions with entities
of the KB, which have been indexed for fast retrieval. As mentions
can be ambiguous, we leverage Wikipedia disambiguation and redi-
rection links to enrich the candidate set of each mention. A good
candidate tuple will have candidates that are reasonably similar to
the surface forms, but it will also contain related concepts. This
intuition stems from the fact that sentences usually contain related
and coherent entities, often belonging to a specific topic.

A candidate is evaluated with a function that considers [29]:
• A "local" score η that considers the similarity of the mentions
with their candidates, and also the overall importance of the
vertex in the graph (intuitively, if two candidates have the
same similarity the most important one should be chosen).

• A "global" score γ that measures how related the candidates
in a tuple are to each other. Measuring the relatedness of the
candidates in the tuple is called Collective Disambiguation.

The goal is to find a candidate tuple T = {t1, t2, . . . , tN } that
maximizes both scores, among all the possible tuples. Local and
global scores could be given different weights. The best tuple T ∗ is
obtained as

1https://ai.googleblog.com/2013/03/learning-from-big-data-40-million.html

T ∗ = argmax
T

∑
ti ∈T

η(ti ) + γ (T ) (1)

The evaluation of this function over all possible tuples T has
exponential complexity, as there exist approximately O(KN ) dif-
ferent tuples. Instead, we approximate the global component γ by
exploiting the information contained in vertex embeddings, which
are created from the KB to capture semantic relations between
entities. Given a tuple, we can measure the average distance of
the embeddings from the mean tuple embedding: a set of coherent
candidates will have low average distance.

Our local function η scores candidate entities using string simi-
larity with the mention they relate to and the PageRank score of
the candidate entity.

3.1 Knowledge Graph Creation
Our EL algorithm links mentions to entities in Wikipedia, using
a Knowledge Graph (KG) created from DBpedia2. DBpedia repre-
sents entities with a schema, and divides them in different types.
For example, Paris3 is an entity of type PopulatedPlace, and has
properties such as area, country and mayor.

From a Knowledge Base represented with Resource Description
Framework (RDF) such as DBpedia, it comes natural to create a
Knowledge Graph, so that relations between entities can be more
easily analyzed and leveraged for EL. Even thoughDBpedia links are
directed, we consider our graph as undirected, as the information
contained in DBpedia links is inherently bidirectional (with the
exception of redirection and disambiguation links). We employ most
of the files that compose the English DBpedia, and create a graph
with around 12million vertices and 170million (bidirectional) edges.

DBpedia links that perform redirections (e.g. NY4) or are out-
links of disambiguation pages (e.g. Paris5) define a Directed acyclic
graph (DAG) that is used to enrich the candidate set of eachmention,
by adding redirection and disambiguation targets to the set.

3.2 Vertex Embeddings Learning
A vertex embedding is an n-dimensional vector associated with
the vertex of a graph, created to encode in a compact way the
information of the vertex. This information could be related to the
topology of the graph (e.g. information about the connectivity of
a vertex or about its neighborhood) or encode additional features
of the vertex (e.g. the category of a Wikipedia page). The key idea
behind embeddings algorithms is that vertices that are similar or
related in some way should also have similar embeddings.

Embeddings are not specific to graphs, but can also be used
to represent images or text, often using very similar techniques.
Indeed, some of the most famous vertex embeddings algorithms,
such as DeepWalk[20], and node2vec[7] leverage ideas taken from
the field of word embeddings. Both these algorithms, in fact, ap-
ply word2vec[17] to random walks, random sequences of adjacent
vertices. In word2vec, using the skip-gram model, the embedding
of a wordwi is learnt to maximize the probability of surrounding

2https://wiki.dbpedia.org/
3http://dbpedia.org/page/Paris
4http://dbpedia.org/page/NY
5http://dbpedia.org/page/Paris_(disambiguation)
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http://dbpedia.org/page/Paris_(disambiguation)


wordswi−2,wi−1,wi+1,wi+2 that are often occuring nearwi (for a
context window of size 5).

In our algorithm, we make use of a custom implementation
of DeepWalk applied to our KG. As the random walks are vertex
sequences, we can transform them into embeddings using word2vec.

Our implementation of DeepWalk doesn’t use hierarchical sam-
pling to approximate the softmax probabilities, like in the original
paper. Instead, we employ negative sampling, as in word2vec and
Node2Vec [7]. Negative sampling approximates the probabilities by
sampling a small number of vertices (e.g. 5%) and is more efficient
and flexible from a computational standpoint as it doesn’t require
an iteration over all the vertices to update a single embedding.

Recent vertex embeddings algorithms, such as GCN [14] or
GraphSage [8] allows encoding vertex properties directly in the
vertex embeddings. With these techniques, it’s possible to leverage
additional vertex information, such as the vertex labels, or even the
embeddings generated from the text or images in each page, and
obtain even more powerful representations. In this work, we limit
ourselves to simpler embeddings to prove that our algorithm can
be highly effective even with a limited amount of information, and
leave the analysis of additional embeddings techniques as future
work.

4 IMPLEMENTATION
In our framework, like other approaches in the field, Entity Linking
(EL) is performed in two main steps. The first, the candidates finder,
obtains, for each textual mention from an input document, a small
number of candidate entities from the graph. The second, collective
disambiguation, ranks the candidate entities to obtains the candidate
tuple that best links each mention to the Knowledge Base (KB).

4.1 Candidate Finder
The goal of the Candidate Finder is to reduce the dimensionality of
the problem by obtaining, for each mention found using Named
Entity Resolution (NER), a small set of candidate entities. These
entities are represented by vertices of the Knowledge Graph (KG),
and the correct entity should be present among them. Candidate
entities are chosen among the full set of vertices in the KG.

Similarly to most EL algorithms, we assume that Named Entities
are already provided as input, and finding the candidates for each
Named Entity (or mention) is the first step of our algorithm.

Each candidate vertex is assigned a score in [0, 1] that represents
the similarity of its identifier (i.e. the DBpedia entity name) to the
surface form of the textual mention. To avoid a linear scan of all
the vertices in the KG, which has complexity |V | and is unsuitable
for real-time usage, we use an index-based string search system.
Experimenting with different string similarity metrics didn’t lead to
significant accuracy differences, so we opted for a straightforward
combination of 2-grams and 3-grams similarity, which is extremely
fast to compute thanks to our indexing approach.

Often, entities might appear with plenty of different surface
forms: for example, "New York" could also be mentioned as "NY"
or "Big Apple". By building a graph with DBpedia redirection links,
we can match a surface form such as "NY" to a vertex whose name
is "NY", and then follow the redirection link from vertex "NY" to
vertex "New_York". Another ambiguous scenario is related to very
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generic surface forms, which might be mapped to many different
vertices. For example, "Paris" could be a French city, but also the
name of many different movies. To deal with this scenario, we
employ disambiguation pages and links. If a surface form is matched
with a disambiguation page, we add all the destinations of the
disambiguation page to the list of candidates.

In both cases, the score of the newly added candidates is given
by the equation eq. (2) (where S is a string similarity function and
we use the "New York" example for clarity).

score(”New_York”) =max(S(”NY ”, ”NY ”),
S(”NY ”, ”New_York”)) (2)

Redirection and disambiguation links might follow each other,
but the subgraph induced by taking all the edges of this type is a
Directed acyclic graph (DAG). Thus, we perform the score propa-
gation step as a Breadth-First Visit (BFV) starting from the initial
sets of candidates. From an implementation standpoint, we first
retrieve theK candidates with the highest score, then perform score
propagation. As such, the final sets might have a size smaller or
larger than K .



4.2 Collective Disambiguation
At this stage of the algorithm, each mention has a set of candidate
vertices, each with its own similarity score (computed by the Can-
didate Finder). The goal is to pick the best candidate vertex for each
mention, and provide the final document entity linking.

Given a list of mentions (M0, M1, . . . , MN ), each mentionMi
has a list of candidates (Ci1, Ci2, . . . , CiK ). A candidate solution is
a tuple (C1i , C2j , . . . , CNq ), withC1i , C2j , . . . being candidate ver-
tices from the candidate set of each mention. For simplicity and ease
of explanation, we also refer to the elements ofT as {t1, t2, . . . , tN }
to denote to the i-th tuple element. As explained by eq. (1), the
goal of the algorithm is to find a tuple T ∗ where each candidate
vertex is reasonably similar to the mention it refers to (according
to the string similarity metric), but also, more importantly, where
candidate vertices for different mentions are strongly related.

Optimizing the relation of different candidates, i.e. the global
score γ in eq. (1), can be done in different ways. For example, we can
define a pairwise vertex similarity metric γi j which is applied to
each pair of candidates ti , tj inT , and obtain the global score дamma
as the sum of γi j over all pairs of candidates. Then, we compute γ
over all possible tuples T and keep the one with maximum value
(of both γ and η, the local score) as final prediction T ∗.

In our experiments, we initially used Personalized PageRank
(PPR) as pairwise similarity function γi j . PPR gives the importance
of each vertex in a graph with respect to a designated personaliza-
tion vertex. Given a personalization vertex, vertices with high PPR
score will be more relevant to it. We can use this idea to compute
the relatedness of a tuple of candidate vertices. For each candidate
vertex, we compute PPR using that vertex as personalization vertex,
and store the PPR scores of all the other candidate vertices. Then,
we look at the tuple of candidate vertices with the highest sum
of pairwise PPR scores. This approach has the drawback of being
computationally intensive, as it requires to compute PPR for each
of the candidate vertices. For N mentions and K candidates per
mention, we need to compute approximately N 2K2 PPR scores, as
PPR is generally not symmetric. Even if we considered a subgraph,
as proposed in AGDISTIS [27], it would be infeasible to compute
PPR thousands of times while keeping real-time latencies. Also,
storing all the pre-computed |V|2 PPR scores requires hundreds of
terabytes of storage, making this approach equally impractical.

Instead of relying on PPR, we developed an approach based
on vertex embeddings, moved by the idea that embeddings can
encode the same information of PPR. If two vertices are similar,
their embeddings should also be similar. To compute the distance
of two embeddings, we use cosine similarity.

The global score γ of a tuple can be computed in 2 ways:

(1) As the sum of pairwise similarities of all the candidates’
embeddings.

(2) As the sum of the similarities of the candidates’ embeddings
from the mean vector of the tuple’s embeddings.

In our experiments, we focus on the second implementation, as
it has evaluation complexity O(N ) instead of O(N 2). From a theo-
retical standpoint, maximizing the similarity w.r.t. the mean tuple
embedding can be seen as a variance minimization of the tuple’s
embeddings, if Euclidean distance is used to compare embeddings.

This interpretation intuitively shows why computing γ in such a
way leads to predicting strongly related vertices.

The equation to compute γ with the second technique is given in
eq. (4). Function e(ti ) retrieves the embedding of a vertex ti , while
ē(T ) is the mean embedding of a tuple T (eq. (3)).

ē(T ) = 1
|T |

∑
ti ∈T

e(ti ) (3)

γ (T ) =
∑
ti ∈T

⟨e(ti ), ē(T )⟩
∥e(ti )∥2∥ē(T )∥2

(4)

The local score η of a tuple is computed as the sum of the inde-
pendent local scores of each candidate vertex. The local score of a
candidate is the weighted sum of its candidate similarity and of its
PageRank score (pre-computed in the preprocessing of the KG).

As stated before, the goal of the algorithm is to find a tuple of can-
didates that maximize a (weighted) sum of global and local scores.
Evaluating all combinations of candidates is not feasible for docu-
ments with more than a handful of mentions (e.g. 10 mentions with
10 candidates each would result in 1010 different tuples). Instead,
we devised a heuristic optimization algorithm based on state-space
search exploration that is able to converge to good solutions (with-
out guarantee of convergence to the global optimal) in a very small
amount of iterations. The basic idea of the optimization algorithm
is to iteratively improve an existing candidate tuple. Starting from
an initial tuple, at each step the algorithm will create a new tuple
which has a better score. The algorithm terminates after a given
amount of steps, or when an early-stop termination criterion is met
(e.g. the score didn’t improve for the last n iterations). The initial
tuple is the one with maximum local score, found in O(KN ) time.

In each optimization step, the algorithm first creates a specified
number of new tuples by modifying a random number of candidates.
The best of these new tuples is then picked. This new tuple is then
optimized with a greedy procedure. For each mention (in random
order), we pick the candidate that maximizes the overall tuple score
(i.e. local and global, while other candidates are kept (temporarily)
fixed. Pseudo-code for the collective disambiguation algorithm is
provided in algorithm 1.

5 EXPERIMENTAL EVALUATION
In this section, we describe the creation of the Knowledge Graph
(KG) from DBpedia and the embeddings generation (section 5.1),
the runtime hyper-parameters of the Entity Linking (EL) algorithm
(section 5.2) and the evaluation metrics we adopted (section 5.3).
We compare our EL algorithm against multiple state-of-the-art EL
systems, on a variety of data sets that allow us to measure the
effectiveness of our approach under many different scenarios. We
also provide an analysis of the execution time of our algorithm, and
show how accuracy and document analysis latency can be adapted
to the user’s needs with simple configuration changes.

5.1 Preprocessing
Our KG is created starting from DBpedia 2016− 10. Before creating
the KG, we clean the entity names by removing characters such
as asterisks, quotes and spaces, and by removing disambiguation
suffixes. To create a KG as large as possible, we treat literal values as



Function optimizer(candidates):
// The initial state is the tuple with maximum η

T = find_initial_state(candidates)
s = compute_score(T)

best_tuple = T
best_score = s

while stop condition not met do
// Create num_children new tuples by modifying
random elements of T . Keep the new tuple with
highest score

T = new_tuples(T, num_children)
T = optimize_tuple(T)
s = compute_score(T)
if curr_score ≥ best_score then

best_tuple = T
best_score = s

end
end
return best_tuple, best_score

Function compute_score(T):
// Local score is a weighted sum of string similarity and
PageRank, γ (T ) is computed as in eq. (4)

// α and β are hyper-parameters
η1 =

∑
ti ∈T strinд_sim(ti )

α

η2 =
∑
ti ∈T PR(ti )

β

returnw1 · η1 +w2 · η2 + (1 −w1 −w2) · γ (T )
Function optimize_tuple(T):

for i ∈ {1, . . . ,T .size} do
T = optimize_mention (T, i)

end
return T

Function optimize_mention(T , i):
// Given a tuple T and a position i , find for the mention in
that position the candidate that maximizes the tuple score
return T

Algorithm 1: The collective disambiguation algorithm. Its input
is, for each mention to be linked, a set of candidate vertices, as
found by the candidates finder. The algorithm stops after a fixed
number of iterations, or if the score hasn’t improved for n steps

entity names whenever possible (i.e. if an entity with the same value
as the literal exists). Overall, the KG has 12 million entities/vertices
and 170 million links/edges.

Before computing PageRank and creating the embeddings of the
vertices, we undirect the graph and make every link bidirectional.
PageRank is computed with standard parameters (e.g. damping
factor of 0.85), and runs for about 800 iterations before convergence.

Vertex embeddings are created with DeepWalk, using an em-
bedding size of 160, a random walk length of 8, 12 random walks
for each vertex, and 6 epochs. The other parameters are left to the
default values proposed in the original paper [20]. Preprocessing

time depends on the parameters used, but takes on average between
4 to 8 hours.

Experiments were mostly run on a single server with an Intel®
Xeon® CPU E5-2680 v2 with 20 cores, 40 threads at 2.80GHz and
378GB of RAM.

5.2 Runtime Hyper-Parameters
Our EL algorithm is fully unsupervised, and doesn’t require any
training [10] or prior probabilities estimations [29] to be effective.
It supports, however, a number of hyper-parameters that can be
tuned to obtain a flexible trade-off between inference time and
accuracy, according to the users’ needs. In the list below,w1,w2, α
and β influence the scoring function, and mostly serve as scaling
factors to make the local and global scores comparable.

We report the values used in the experiments, although our
algorithm is very robust to small changes of parameters, and modi-
fications don’t usually affect accuracy in a noticeable way.

• K : the number of candidates per mention obtained by the
candidate finder. With just 100 candidates, the correct entity
link is among these candidates more than 95% of the times.
Higher values of K don’t improve this percentage in a signif-
icant way. Lower values of K (e.g. 10) can greatly decrease
the execution time of the algorithm.

• w1,w2: weights attributed to the local score components.
They influence the string similarity and the PageRank score
of a candidate entity, respectively. Reasonable values are
w1 ∈ [0.4, 0.5] andw2 ∈ [0.25, 0.3]. 1−w1 −w2 is the weight
given to γ , the global score.

• α , β : exponents to which the string similarity and the PageR-
ank score of a candidate entity are raised. They work as nor-
malization/scaling factors. Reasonable values are α ∈ [0.8, 1]
and β = 0.1.

• num_steps: number of steps done by the optimization al-
gorithm. Usually even 10 steps are enough to provide good
results, but occasionally larger values (e.g. 40) can be useful.
Low values can boost significantly the inference time, with
minimum loss of accuracy. By default, it is used an early stop
value of ½num_steps.

5.3 Evaluation Metrics and Data Sets
The literature makes use of multiple metrics to evaluate the per-
formance of different EL systems. The lack of a common metric
that is universally shared by different authors makes sometimes
hard to compare different EL techniques. In our work, we focus on
micro-averaged Bag-of-Concepts (BoC) precision π , recall ρ and F1.
We also provide values ofmicro-averaged andmacro-averaged accu-
racy a. Results obtained by our algorithm are compared to other EL
systems using the same metrics chosen by the respective authors.
No other author reported metrics related to execution time.

Accuracy a is simply the percentage of correctly predicted entity
links.Macro-averaged accuracy is the average of the accuracy values
measured on each document, while micro-averaged accuracy is
measured on the entire data set at once. As documents in a data
set could have a significantly different number of mentions, micro-
averaging assigns higher impact to documents with more mentions,
and gives a better picture of the real performance of the algorithm.



Table 1: Summary of the characteristics of different data sets
used in the evaluation

Data Set Type #docs #mentions Mentions
per doc.

ACE2004 news 57 252 4.44
AQUAINT news 50 727 14.54
MSNBC news 20 658 32.90
N3-Reuters news 128 650 5.08
N3-RSS-500 Rss-feeds 500 524 1.05

Given a set of document D and a document di ∈ D, for which
there is a prediction entity set Pi and a golden entity set Gi , one
can define micro-averaged BoC as

π =
|⋃di ∈D Gi ∩ Pi |

|⋃di ∈D Pi |
ρ =

|⋃di ∈D Gi ∩ Pi |
|⋃di ∈D Gi |

F1 = 2
π · ρ
π + ρ

(5)
Even though BoC works on sets of elements and it doesn’t check

that prediction-golden pairs are correct, it gives numerical values
very similar to accuracy and is often used in the literature as the
performance metric of choice [29].

In our evaluation, we focus on 5 data sets that are commonly
used as a benchmark of EL algorithms, thanks to the significantly
different types of documents they contain and because they are
among the largest available in this field [29]. The following list
details the data sets used in our experiments.

• ACE2004: this small data set was assembled by Ratinov et
al. [24] and contains 57 articles, with 253 mentions.

• AQUAINT: this data set contains 50 documents and 727
mentions (14.54 mentions per document), extracted from
news belonging to the Xinhua News Service, the New York
Times, and the Associated Press. It was created by Milne and
Witten [18] and commonly used in the literature (among
other, by [15] and [29]).

• MSNBC: the corpus was created by Cucerzan et al. [4] and
contains 20 documents with 658 mentions (32.90 mentions
per document), extracted from news articles. It contains
the largest documents of all our data sets, and it is a good
benchmark to measure the execution time and flexibility of
our algorithm.

• N3-Reuters: created by Röder et al. [25], this corpus con-
tains 128 economic news articles with 650 mentions.

• N3-RSS-500: this data set contains 500 documents extracted
from RSS feeds, with topics related to politics and economy.
It was created by Gerber et al. [6].

Note that there exists a 1-to-1 mapping between Wikipedia and
DBpedia URIs, so using DBpedia for our KG allows us to easily
retrieve the corresponding Wikipedia URIs.

5.4 Accuracy Analysis
Our algorithm is tested against the following EL systems: AIDA [11],
Wikifier [24], DoSeR [29], WAT [22], Babelfy [19] and Spotlight
[16]. Results for these algorithms are taken from Zwicklbauer et al.

Table 2: Results of micro and macro-averaged accuracy a,
and micro-averaged precision π , recall ρ and F1 score ob-
tained by our algorithms on different data sets

Data Set Macro
acc.

Micro
acc.

π ρ F1

ACE2004 0.85 0.85 0.83 0.83 0.83
AQUAINT 0.84 0.86 0.86 0.86 0.86
MSNBC 0.90 0.89 0.90 0.94 0.92
N3-Reuters 0.76 0.76 0.78 0.87 0.82
N3-RSS-500 0.68 0.72 0.71 0.73 0.72

Table 3: Results of BoCmicro-averaged F1 score of different
state-of-the-art EL algorithms on multiple data sets

Data Set Ours DoSeR WK AIDA WAT BB SL

ACE2004 0.84 0.90 0.83 0.81 0.80 0.56 0.71
AQUAINT 0.86 0.84 0.86 0.53 0.77 0.65 0.71
MSNBC 0.92 0.91 0.85 0.78 0.78 0.60 0.51
N3-Reuters 0.82 0.85 0.70 0.60 0.64 0.53 0.58
N3-RSS-500 0.72 0.75 0.73 0.71 0.68 0.63 0.62

WK is Wikifier, BB is Babelfy, SL is Spotlight

[29], who in turn computed them through GERBIL (General Entity
Annotator Benchmark), proposed by Uzbeck et al. [28]. GERBIL is
a web platform that enables the comparison of different EL systems
over a variety of data sets, and ensures that results are comparable.
Our experiments were run with the same scenarios provided by
GERBIL. Mentions whose corresponding entities are not present in
the KG are not considered in the evaluation of F1, precision, recall
and accuracy. Results are obtained using the best parameters and
configurations provided by the authors.

To the best of our knowledge, DoSeR and Wikifier are the best
performing EL algorithms when tested against our evaluation data
sets. Some of the algorithms in our analysis provide links to knowl-
edge bases different fromWikipedia or DBpedia (for example, AIDA
uses YAGO2 alongside DBpedia), but in all cases there exists 1-to-1
mapping between the entities of different Knowledge Base (KB),
which enables the comparison of these systems.

Table 2 shows different metrics of performance of our EL al-
gorithm across different data sets. It can be seen that the lowest
accuracy is obtained on the N3-RSS-500 data set: this data set has,
on average, just 1 mention per document. As such, we cannot rely
on the collective disambiguation step to provide good results. In-
stead, the final predictions will be mostly based on the candidate
finder and the PageRank score of each candidate. On the other hand,
we see that results on the other data sets are closer to each other,
even though the average number of mentions in their documents
is highly different. This result suggests that our algorithm doesn’t
require a large context to provide good predictions, but even 4 or
5 mentions are often enough. Also, our EL system seems to favor
high recall ρ over high precision π (this is especially evident with



theN3-Reuters data set). This implies that, broadly speaking, most
of the entities that should be retrieved are actually found by our
algorithm. In our experiments, we managed to increase precision
by giving higher weight to the global score γ . The intuition is that
there might be mentions which should be linked to the same entity.
Choosing the same entity for multiple mentions will give a higher
global score, as the mean embedding will tend to the embedding of
the repeated entity. Thus, giving higher weight to γ will improve
precision. Still, the settings used in our experiment gave a better
balance of π and ρ, and an overall higher F1 score.

Table 3 shows how our algorithm fares against other state-of-
the-art EL algorithms. We can see how only DoSeR, and (limited
to the AQUAINT data set)Wikifier provide strong competition to
our algorithm. Still,Wikifier is a supervised algorithm as it uses a
ranking Support Vector Machine (SVM), while DoSeR requires the
estimation of prior probabilities given mention-target entity pairs.
Compared to them, our algorithm doesn’t require any training,
and is significantly simpler. Moreover, our algorithm can easily be
applied to other domains other thanWikipedia, as it doesn’t require
any text analysis or information specific to Wikipedia (e.g. the
mention-target entity pairs) and provides much higher modularity,
as most of its components (the embedding algorithm, the string
matching algorithm, and the optimization algorithm) can be updated
or replaced according to the user’s need, without having to retrain
the EL algorithm.

5.5 Execution Time Analysis
The focus of our EL algorithm is not just on the accuracy of its
predictions, but also on providing good results in a very short, and
possibly real-time, time-frame (here, we consider the algorithm to
be real-time if the end-to-end analysis takes less than one second).
Moreover, users should be able to tune the algorithm according to
their needs, and to whether they require higher accuracy, higher
throughput or lower latency.

Figure 5 provides a breakdown of the execution time of our EL
algorithm, to better understand which parts of the algorithm take
the most time. We show how the execution time can be influenced
using different settings, and how a minimal drop in accuracy can
translate to a significant reduction in the document analysis latency.
We measure times on the MSNBC data set as it has the highest
mention per document value among our data sets (32), and provides
a reasonable upper bound on the execution time of our algorithm.
Most of the execution time of the algorithm is spent either in the
string-matching step of the candidate finder, or in the collective dis-
ambiguation step. The overheads (everything which doesn’t belong
to a specific step) are negligible, as it can be measured by subtract-
ing the CF and Dis. columns from the total execution time. In
the low-latency configuration we lower the number of candidates
per mention, and the number of optimization steps: the execution
time improves by almost a factor of 6x compared to the default
configuration, with a loss of F1 score of only 2% absolute points.

Our EL algorithm is fully multi-threaded, and both the candidate
finder and the disambiguation step are implemented in a parallel
fashion. The candidate finder can process multiple mentions at the
same time, and the underlying string matching algorithm used to
find the candidates of each mention is also highly parallelized. The
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Figure 5: Execution time with different configurations

CF, sm is the string-matching part of the candidates finder, while
CF, pr is the score propagation using redirection and

disambiguation links. Dis. is the collective disambiguation step.

disambiguation algorithm analyzes multiple candidate tuples at
once, and the computation of the global score γ of each tuple is also
multi-threaded, being mostly vector arithmetic.

Users can also choose whether to process multiple documents at
once (to maximize throughput), or to fully dedicate the machine
resources to a single document (to minimize latency). To compute
the execution time breakdown in a reliable way, we disabled the
analysis of multiple documents in parallel. Our analysis doesn’t
consider the time required for the initial Named Entity Resolution
(NER) step, as our focus is on the EL algorithm. Still, the availability
of high-performance NER algorithms [5, 26] implies that real-time
latencies are still achievable.

6 CONCLUSION AND FUTUREWORK
We presented a novel unsupervised Entity Linking (EL) algorithm
and framework that leverages vertex neural embeddings to provide
high accuracy and performance, along with an unmatched degree
of modularity and flexibility. Our approach can rival and exceed
multiple supervised state-of-the-art algorithms, and provide real-
time analyses without significant sacrifices in terms of accuracy.
The results presented in this work were achieved using DeepWalk,
a fairly old and simple graph embedding algorithm. We plan to test
more recent algorithms and make use of graph properties (such as
entity labels, or textual embeddings created from Wikipedia pages)
to further improve accuracy. Thanks to the structure of the frame-
work, we don’t expect any degradation in inference performance
when using better embeddings.
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