
Exploring transductive and inductive methods for
vertex embedding in biological networks

Luca G. Cellamare∗, Michele A. Bertoldi∗, Alberto Parravicini†, Marco D. Santambrogio†
Dipartimento di Elettronica, Informazione e Bioingegneria

Politecnico di Milano
Milano, Italy

∗{lucagiuseppe.cellamare, micheleamedeo.bertoldi}@mail.polimi.it
†{alberto.parravicini, marco.santambrogio}@polimi.it

Abstract— Proteins perform an innumerable number of func-
tions within living organisms, and the understanding of their
interactions is a primary challenge for medicine and biology.
The most natural way to represent their structure and their
complex interactions are graphs, a powerful data structure to
model objects (vertex) and their relations (edges). At the same
time, Machine Learning is a powerful tool to extract knowledge
and perform complex tasks on proteins. But, to perform machine
learning on graphs its first essential to transform the information
expressed as a graph into a structure that can be easily exploited
by a Machine Learning model. Traditional approaches for learn-
ing representations relies on hand-crafted specialized heuristics to
extract meaningful information about the entities of a graph, but
hand-engineering features can be expensive and time-consuming.
In recent years, vertex embedding methods have proven their
potential in automatically representing graphs information as
feature input for machine learning models. Existing methods can
be divided into different groups, such as random-walk based
algorithms or graph neural networks. These methods also differ
as some approaches take into account just topological information
and others can leverage additional features contained in the
graph. Within this work, we show how graph embeddings can
excel in the real-world task of protein role classification. We
also prove how it is possible to combine embeddings from
unsupervised models to match or exceed state-of-the-art results
obtained by single supervised models, a promising direction of
research to obtain protein embeddings able to generalize to a
much wider array of tasks.

Index Terms—Graph Embeddings, Protein classification, Neu-
ral Embeddings

I. INTRODUCTION

Proteins represent the most important class of biomolecules
in living organisms. They carry out the majority of the cellular
processes and act as structural constituents, catalysis agents
and signaling molecules. Proteins are molecular machines of
every biological system. For this reason, a comprehensive un-
derstanding of their interactions is essential to inspect human
diseases, it could elucidate for example the molecular basis
of diseases aiding in prevention, diagnosis and treatment [1].
The most natural way to represent their structure and their
complex interactions are graphs, a powerful data structure to
model objects (vertex) and their relations (edges).

Graphs used to represent protein interactions are particularly
complex, due to the interactions between proteins and all the
sub-graph structures, the tissues [2].

The roles of proteins range from catalysis of biochemical
reactions to transport to signal transduction, and a single
protein may play a role in multiple processes or cellular
pathways, it is possible to think to a protein function as
”anything that happens to or through a protein” [3]. Protein
role prediction has important applications in medicine and in
biotechnology, such as drug and enzymes design.

The difficulty of protein roles classification makes this task
a natural target for Machine Learning (ML) models which
seek to be able to use graph-structured data as feature input
to make predictions.

Fig. 1. Graph representation of a tissue hierarchy, from the BRENDA Tissue
Ontology [4]. Courtesy of Zitnik et al. [5]

However, ML models have been most successful on data
with an underlying Euclidean or grid-like structure (e.g. text or
images). This is not the case of graphs: their nature implies that
there are no familiar properties such as global parameteriza-
tion, a common system of coordinates, vector space structure,
or shift-invariance. Fundamental operations (e.g. convolutions)
that are widely used in the Euclidean domain might not be
well defined on non-Euclidean geometries. In fact, there is no
straightforward way to encode this non-Euclidean information
into a feature vector that can be fed to a model.

To leverage traditional ML models in the field of graph
analytics, it is possible to devise techniques that project
the non-Euclidean graph structure to a more traditional Eu-
clidean domain. Graph embeddings algorithms compress the



graph topology, vertex-to-vertex relationships, and other rele-
vant information (i.e. text attributes, vertex degrees) as low-
dimensional dense numerical vectors, which can be used as
input of any ML model. The underlying idea is that each vertex
is represented as a vector, which encodes the information
contained in the vertex. Vertices which somehow carry the
same information (i.e. are close to each other, or have similar
features), should have a similar embedding, according to an
appropriate distance function (e.g. Euclidean distance). There
exist countless embedding algorithms that have been proposed
in the literature, ranging from techniques based on matrix
factorization to random walks and Graph Neural Network
(GNN). In our study case, all these families of models should
be able to demonstrate inductive capabilities, i.e. be able to
predict labels of unseen groups of vertices or entire sub-
graphs. It is difficult to understand what is the most suitable
class of methods and how to configure them optimally. The
achievement of a generalization by harnessing heterogeneous
data over several dimensions of biological variation, would
enable great progress in biology and medicine [2].

In this work, we present the following contributions:
• A review of state-of-the-art vertex embedding algorithms,

and show how to leverage the unique characteristics of
each algorithm to obtain excellent results in the real-
world task of protein role classification, with accuracies
exceeding 95%.

• We show how an ensemble model created by combining
transductive embedding representations in an unsuper-
vised fashion from different embedding algorithm can
easily outperform the single algorithms, and even rival
traditional supervised algorithms.

II. STATE OF THE ART

The idea of representing data which isn’t inherently Eu-
clidean as dense vector has been for a long time a hot topic
in the field of ML and Information Retrieval. For example,
a milestone in the field of Natural Language Processing is
represented by word2vec [6], which encodes words as numer-
ical vectors using a simple neural network. The application
of embedding algorithms to graphs is more recent, but great
progress has been made in the past few years.

Embeddings algorithms can be grouped into two broad
categories, depending on how they generate embeddings:
transductives and inductives.

Transductive methods directly learn vertex embeddings for
individual vertices and cannot be used to compute embeddings
of vertices not seen during the training phase. Generating
embeddings of unseen vertices would at the very least require
expensive additional training (e.g. via stochastic gradient de-
scent). Transductive methods are principally based on matrix
factorization techniques and random walks.

Inductive algorithms, instead, are trained by learning param-
eters that represent the model that generates the embeddings.
In a sense, these algorithms don’t learn the embeddings, but
they learn how to generate them. Hence, they are able to
generate embeddings for vertices not seen during the training

phase, and provide much higher flexibility. Most inductive
algorithms are based on neural networks, whose parameters
are learnt during the training. Historically, graph embedding
algorithms have been developed using matrix factorization
techniques, random walks techniques, and, more recently,
neural networks modified to handle the topology of graphs.

Matrix factorization-based approaches are directly inspired
by classic techniques for dimensionality reduction. They usu-
ally measure the distance between two matrices as a similarity
measure. Factorization between matrices is largely theorized
in mathematics but these methods are characterized by high
computational costs [7].

Random walks approaches are based on the creation of
random sequences of connected vertices. These algorithms
were inspired by similar techniques used in Natural Language
Processing, such as the aforementioned word2vec [6]. The key
innovation of these approaches is the optimization of vertex
embeddings so that vertices will have similar embeddings if
they tend to co-occur on short random walks over the graph.
Perozzi et al. (2014) introduced DeepWalk [8], a method
that uses local information obtained from truncated random
walks to learn latent representations of vertices in a network.
DeepWalk has been for years a strong baseline and a source
of inspiration for many works in literature [9], [10].

Another field of research has focused on extending neural
networks to handle arbitrary structured graphs. Graph Neural
Networks (GNNs) were introduced in Gori et al. [11] and
Scarselli et al. [12] as a generalization of recursive neural
networks (RNNs) that can directly operate on complex graphs.
GNNs consist of an iterative process, which propagates the
vertices states until equilibrium, followed by a neural network,
which produces an output for each vertex based on its state.

Furthermore, most recent approaches effectively general-
ized convolutional neural networks to the graph domain.
These methods are often categorized as spectral and non-
spectral approaches. Spectral approaches work leverage the
eigenvectors and eigenvalues of a graph adjacency matrix
and have been successfully applied in the context of vertex
classification (2016) [13] to solve the problem of non-spatially
localized filters by means of a Chebyshev expansion of the
graph Laplacian. This approach removed the need to compute
the eigenvectors of the Laplacian and resulted in spatially
localized filters. Finally, the previous method was streamlined
by Kipf & Welling (2017) [14] in GCN, by restricting the
filters to operate in a 1-step neighborhood around each vertex.
In all of the aforementioned spectral approaches, the learned
weights depend on the graph structure. Thus, a model trained
on a specific structure cannot be directly applied to a graph
with a different structure, and lacks inductive capabilities.

Non-spectral approaches define convolutions directly on the
graph operating and are able to recognize structural properties
of a vertex neighborhood that reveal both the vertex local
role in the graph, as well as its global position. Hamilton
et al. (2017) [15] introduced GraphSAGE, a method for
computing vertex representations in an inductive manner. The
key idea behind this model is to learn how to aggregate feature



information from a vertex local neighborhood (e.g. the degrees
or text attributes of nearby vertices). Further improvements
have been reached through attention mechanisms during the
propagation step. The main intuition behind attention strategy
is that it allows for identifying the most relevant parts of the
input. GAT, introduced by Velickovic et al. (2018) [16], does
not require to sample neighborhoods and it is able to assign
arbitrary weights to different neighbors, achieving state-of-the-
art performances on a variety of tasks.

III. METHODS

In this work, we focus our attention on the task of predicting
protein roles, which can be modeled as a multi-label vertex
classification problem.

This problem can be modeled in the following way: the
input is composed by the graph topology, denoted with V
and E, the set of N vertices and the set of edges, and when
possible also the feature matrix X , and we obtain as output
the predicted labels. To accomplish this task we used two
types of embedding algorithms, transductive and inductive.
In the transductive setting we obtain the embedding vectors
in an unsupervised manner for every protein/vertex and we
then feed these encoded representations to a classifier which
is able to produce as output the predictions, after being trained
in a supervised way leveraging the known labels. In the
inductive case instead, we apply a supervised learning end-
to-end process making use of classification labels in order
to optimize the embeddings and to directly obtain predicted
labels. The embedding algorithm doesn’t simply learn the
embeddings, but learns the parameter required to compress the
input vertices and features and create embeddings as output: as
a result, inductive algorithms can be used to learn embeddings
of vertices not seen during the training.

Following the encoder-decoder framework introduced by
Hamilton et al. [15], we describe vertex embedding methods
around two key components: an encoder that maps each
vertex and its additional features to a low dimensional vector
or embedding vector, and a decoder, which decodes global
positions of vertices and local neighborhoods in the graph from
the embeddings. Within the class of transductive methods we
considered DeepWalk [8] and Node2Vec [10]. Both methods
leverage the ideas behind word2vec [6] to obtain numerical
representations of vertices starting from random walks, i.e. se-
quences of vertices (word2vec, instead, learns representations
of words starting from sentences, i.e. sequences of words).
The key idea behind these methods is to learn embeddings so
that

DEC(zi, zj) ,
ezizj∑

vk∈V e
zizk

≈ pG,T (vj |vi) (1)

where pG,T (vj |vi) is the probability of visiting vj on a
length-T random walk starting at vi, with T usually defined to
be in the range T ∈ {2, . . . , 10}. We also considered a method
which defines random walks in more flexible ways. Walklets
[9], for example, is able to skip steps in each random walk.
It is capable of generating a corpus of vertex pairs which are

reachable via paths of a fixed length, which can then be used to
learn a series of latent representations, each capturing higher
order relationships from matrix adjacency A.

Recent node embedding approaches make use of encoders
that rely on a vertex local neighborhood, but not necessarily
on the entire graph. Intuitively, these algorithms create em-
beddings for a node by aggregating information from its local
neighborhood. Compared to already discussed methods, these
algorithms also take into consideration the feature matrix X
to create the embeddings vector.

Among the inductive embedding algorithms, we experi-
mented with a semi-supervised neural network model f(X,A)
GCN of Kipf et al. [14] which defined the propagation rule

H(l+1) = σ(D̃−
1
2 ÃD̃

− 1
2H(l)W (l)) (2)

where Ã = A+I and D̃ is the diagonal node degree matrix
of Ã, W (l) is a weight matrix for the l-th neural network layer
H(0) = X and H(L) = Z is the output embedding vector.

We also used in both supervised and unsupervised fashion
the GraphSAGE algorithm proposed by Hamilton et al. [15].
The intuition behind GraphSAGE is that at each iteration,
vertices aggregate information from their local neighbors as

H l
N(v) ← AGGREGATEl({H l−1

u , ∀u ∈ N(v)}) (3)

We considered both the GraphSAGE-LSTM and
GraphSAGE-pool variants. The first apply an LSTM
aggregator to a random permutation of the neighbors of a
vertex. In GraphSAGE-pool, instead, the neighbor vector
is independently fed through a fully-connected neural
network. Following this transformation, an element-wise
max-pooling operation is applied to aggregate information
across the neighbor set. After the aggregation of neighboring
feature vectors, GraphSAGE concatenates the vertex current
representation. Then, the representation is fed to a fully
connected layer with nonlinear activation function which
computes the representations to be used at the next step of
the algorithm. The last embedding algorithm that we tested
is GAT (Graph Attention Network) [16]. This algorithm
implements a shared attention mechanism on vertices of form

eij = a(W~hi, . . . , W~hj) (4)

where eij represents the importance of node js features
to node i. We refer the reader to the original papers and to
[17] for a comprehensive understanding of the aforementioned
methods.

IV. EXPERIMENTAL RESULTS

In this section, we present our testing methodology, pro-
vide details about the hyper-parameters used in each graph
embedding algorithm, and measure the performance of each
algorithm. We compare the performance of both transductive
and inductive models, and show how to build ensembles of
unsupervised embedding algorithms.



In our case study, we consider the dataset of multi-cellular
function through 107 layers networks originally presented in
the work of Zitnik et al. [5]. This dataset was obtained by the
mapping of tissues in the Human Protein Reference Database
(HPRD) [18] to tissues in the BRENDA Tissue Ontology [4]
from Greene et al. [19]. The dataset is composed of 24 graphs,
56944 vertices and 818716 edges and contains positional gene
sets, motif gene sets and immunological signatures as features
(50 features in total) and 121 gene ontology sets as labels1.
Note that each vertex could have in principle any of the 121
labels, and the number of labels of a given vertex is not known
in advance. Multi-label classification problems such as this are
usually considered very challenging, and special care must be
taken to obtain satisfactory results.

The performance of the different algorithms is measured
using Micro-averaged and Macro-averaged F1 score. The F1
score is an accuracy metric computed as harmonic average of
precision P and recall R. Precision is the ratio of true positives
(TP) to all predicted positives (TP + FP). Recall is the ratio
of true positives to all actual positives (TP + FN). The F1
score weights recall and precision equally, and moderately
good performance on both will be favored over extremely
good performance on one and poor performance on the other.
In the context of multi-label classification, we compute the
average F1 score for each protein. This metric is referred
to as Mean-F1 score or Micro-averaged F1 score. Macro-F1,
instead, averages results across all classes, so classes that are
very rare will have a higher impact than they should. Micro-F1
aggregates all results, so rare classes have a lower impact on
the final score. As a result, Macro-F1 tends to be lower than
Micro-F1 when computed on the dataset we considered.

In our analysis, we evaluate both transductive and inductive
embedding algorithms. Transductive algorithms, i.e. Deep-
Walk, Walklets, node2vec and GraphSAGE-pool, are trained
in a fully unsupervised way, using both the graph topology and
the vertex features (when supported by the algorithm, such as
in the case of GraphSAGE-pool). DeepWalk was set with a
layer size of 128, learning rate of 0.05, walk length of 10
and 15 walks per vertex. Walklets was set with a reduced
walk length of 10, walk-number per vertex 80, P and Q
(hyperparameters for second order walks) equal respectively to
4 and 0.25 and the output embedding dimension was increased
to from 160 to 200 to obtain better performance. Node2vec
was set with a walk length of 12, walk-number per vertex 10,
P equal to 1 and Q equal to 5. GraphSAGE-pool was trained
in the unsupervised setting with 2 layers of equal output size
of 256 learning rate of 0.00005 and a batch size of 512 for
the training set and 256 for the validation one. We also set a
number of samples equal to 30 in layer 1 and 10 in layer 2,
the model was trained with a dropout value equal to 0.1 and
maximum node degree of 128.

These algorithms create vertex embeddings without knowl-
edge of the labels that should be predicted. These embeddings
could in principle be used for other tasks, and are more

1https://s3.us-east-2.amazonaws.com/dgl.ai/dataset/ppi.zip

TABLE I
PERFORMANCE OF DIFFERENT EMBEDDING ALGORITHMS ON THE PPI

DATASET

Category Method Micro-F1 Macro-F1

NA Features only 0.335 0.116
Unsup. DeepWalk 0.435 0.127
Unsup. Walklets 0.502 0.391
Unsup. node2vec 0.432 0.397
Unsup. GraphSAGE-pool 0.444 0.266
Sup. GraphSAGE-LSTM 0.615 0.453
Sup. GCN 0.498 0.372
Sup GAT 0.978 0.966
Ensemble (1) DeepWalk+SAGE-pool+feats 0.495 0.214
Ensemble (2) Walklets+SAGE-pool+feats 0.557 0.417

Highlighted, the best Micro and Macro F1 results obtained by unsupervised
and supervised methods

general, in a sense. On the other hand, transductive algorithms
are unable to easily create embeddings of unseen vertices, and
their training is in general more time-consuming. Embeddings
created by transductive algorithms can be stored in a file, and
used as input of a supervised classifier whose output is the
set of labels to be predicted. Given the multi-label nature of
our task, we opted for a simple multi-label SGD classifier,
a linear classifier with stochastic gradient descent training.
We experimented both with a logistic regression and with a
linear support vector machine. In practice, we train a different
classifier for each of the 121 labels. One might assume that
different labels are correlated, but even with independent
classifiers it is possible to obtain reasonable accuracy values,
as shown in table I. In both cases we set 1000 as the number
of maximum iterations and 10−5 as stopping criterion.

Inductive algorithms, on the other hand, are able to create
embeddings of unseen vertices, and can in general be trained
in a supervised fashion. In this work, we train inductive algo-
rithms using just a subset of the available protein interaction
graphs, and use the remaining subgraphs as validation set and
training set. Of the 24 graphs that compose our dataset, we
use 20 graphs for training, 2 for the test set and 2 for the final
validation set used to measure the values reported in table I.

Among the inductive algorithms that we tested,
GraphSAGE-LSTM was set identically to GraphSAGE-
pool except for the batch size which was 256 in this case.
GCN was trained with 48 hidden parameters and final layer
output of 120. The final output is then fed to a fully connected
layer with size 121 and logistic activation to obtain the label
predictions. The algorithm that performed the best on the
PPI dataset is GAT, trained with the original configuration
presented by Velickovic et al. [16]. GAT is trained with 2
layers each with 256 hidden units, 4 attention multi-heads
for the first 2 layers and 6 for the third, and a learning rate
of 0.005. We trained GAT over 50 epochs of training using
different numbers of hidden units, to better understand how
the size of a model influences performance in accuracy. As is
possible to see in fig. 2 and fig. 3, the level of Micro-F1 score



is very different based on the size of the hidden units. With
an extreme reduction of parameter dimension, the model,
despite a faster execution speed, not very significant for our
task, gets significantly lower Micro-F1 score. Still, using only
72 hidden units results in almost 90% Micro-F1 score, not
far from the 97% obtained by the best performing model.

Fig. 2. GAT Micro-F1 and loss at 50 epochs of train with different number
of hidden units. It can be seen how the best results are achieved at 256 units:
larger models are likely to overfit, or be unable to reach the same accuracy
in a limited number of iterations

Fig. 3. GAT Micro-F1 and loss during the training, using different number
of hidden units. The best results are achieved with 256 units, even though the
large model might be able to reach lower loss if trained for more iterations

As is it possible to infer from table I, supervised methods
clearly outperform unsupervised ones, taking advantage of
known labels to optimize the embedding representations. How-
ever, the necessity of handle heterogeneous data across several
dimensions of biological variation [2] means that there is a
great need of the ability to generalize given by unsupervised
methods. Hence, we have combined the embeddings given
in output by unsupervised models, combining Walklets and
DeepWalk, methods that take into consideration strictly topo-
logical information, with unsupervised GraphSAGE, a very
different method that leverages features in the computation of
embeddings. The idea is to create a larger ensemble model
by leveraging representations of the same vertex generated by
different methods, to form a richer and more comprehensive
embedding vector for each vertex.

Combining the 128 sized embedding representations of
DeepWalk and GraphSAGE-pool concatenated with the fea-
tures, we reach a Micro-F1 score of 0.495 with an SGD

classifier using as loss function a logistic regression, 500
epochs of training and 10−4 as stopping criterion.

Concatenating embeddings vector with a size of 200 from
Walklets and GraphSAGE-pool, plus the vertex features we
reach a Micro-F1 score of 0.557 during test inference. Those
values achieve or match state-of-the-art results from unsuper-
vised models and even exceed the result of GCN, a supervised
model. Indeed, the ensemble model obtained an improvement
of 6% over basic unsupervised methods. Moreover, as an
indicator of robustness, ensemble methods never performed
worse than their original components. Results are presented in
fig. 4 We also noticed that normalizing the embeddings in the
[0, 1] or [−1, 1] range can improve Micro-F1 scores by around
2%. Reducing the concatenated embedding dimensionality
with techniques such as Principal Component Analysis (PCA)
gave no significant gain in our experiments. The code used for
our experiments is available online2.

Fig. 4. Comparison between the results obtained by ensembles and sin-
gle unsupervised methods. Ensemble obtains improvements of around 6%
of Micro-F1 score compared to their components. Ensemble(1) is Deep-
Walk + GraphSAGE-pool + features, while Ensemble(2) is Walklets +
GraphSAGE-pool + features

V. CONCLUSION AND FUTURE WORK

An ideal Machine Learning method needs to answer bio-
logical or medical questions, identify important features and
predict outcomes of heterogeneous data across several dimen-
sions of biological variation. In the quest to reach a method
with such power and flexibility, we have shown how graph
embedding algorithms are able to obtain excellent results in the
complex task of multi-label protein role classification and they
will become increasingly important in modern biology. In the
case study we have considered, supervised methods were able
to achieve more than 95% Micro-averaged F1. Unsupervised
methods gave less accurate predictions, but their capability is
often limited by the amount of data at our disposal. We have
demonstrated how it is possible to improve the performance
of unsupervised embedding algorithms by leveraging ensemble
techniques. Being able to improve the quality of our model by
considering representations based on different characteristics
is an interesting line of research to be investigated even further.

2https://github.com/LucaCellamare/PPI-classification-python



REFERENCES

[1] A. Griffa, P. S. Baumann, C. Ferrari, K. Q. Do, P. Conus, J.-P. Thiran,
and P. Hagmann, “Characterizing the connectome in schizophrenia with
diffusion spectrum imaging,” Human brain mapping, vol. 36, no. 1, pp.
354–366, 2015.

[2] M. Zitnik, F. Nguyen, B. Wang, J. Leskovec, A. Goldenberg, and
M. M. Hoffman, “Machine learning for integrating data in biology and
medicine: Principles, practice, and opportunities,” Information Fusion,
vol. 50, pp. 71–91, 2019.

[3] B. Rost, J. Liu, R. Nair, K. O. Wrzeszczynski, and Y. Ofran, “Automatic
prediction of protein function,” Cellular and Molecular Life Sciences
CMLS, vol. 60, no. 12, pp. 2637–2650, 2003.

[4] M. Gremse, A. Chang, I. Schomburg, A. Grote, M. Scheer, C. Ebeling,
and D. Schomburg, “The brenda tissue ontology (bto): the first all-
integrating ontology of all organisms for enzyme sources,” Nucleic acids
research, vol. 39, no. suppl 1, pp. D507–D513, 2010.

[5] M. Zitnik and J. Leskovec, “Predicting multicellular function through
multi-layer tissue networks,” Bioinformatics, vol. 33, no. 14, pp. i190–
i198, 2017.

[6] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[7] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and
A. J. Smola, “Distributed large-scale natural graph factorization,”
in Proceedings of the 22nd international conference on World
Wide Web - WWW '13. ACM Press, 2013. [Online]. Available:
https://doi.org/10.1145%2F2488388.2488393

[8] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2014, pp. 701–710.

[9] B. Perozzi, V. Kulkarni, and S. Skiena, “Walklets: Multiscale graph

embeddings for interpretable network classification,” arXiv preprint
arXiv:1605.02115, 2016.

[10] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2016,
pp. 855–864.

[11] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning
in graph domains,” in Proceedings. 2005 IEEE International Joint
Conference on Neural Networks, 2005., vol. 2. IEEE, 2005, pp. 729–
734.

[12] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61–80, 2009.

[13] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Advances
in neural information processing systems, 2016, pp. 3844–3852.

[14] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[15] W. L. Hamilton, Z. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” IEEE Data Eng. Bull., vol. 40, pp.
52–74, 2017.

[16] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[17] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A compre-
hensive survey on graph neural networks,” CoRR, vol. abs/1901.00596,
2019.

[18] T. Keshava Prasad, R. Goel, K. Kandasamy, S. Keerthikumar, S. Kumar,
S. Mathivanan, D. Telikicherla, R. Raju, B. Shafreen, A. Venugopal
et al., “Human protein reference database2009 update,” Nucleic acids
research, vol. 37, no. suppl 1, pp. D767–D772, 2008.

[19] C. S. Greene, A. Krishnan, A. K. Wong, E. Ricciotti, R. A. Zelaya, D. S.
Himmelstein, R. Zhang, B. M. Hartmann, E. Zaslavsky, S. C. Sealfon
et al., “Understanding multicellular function and disease with human
tissue-specific networks,” Nature genetics, vol. 47, no. 6, p. 569, 2015.


