Solving write conflicts in GPU-accelerated graph
computation: a PageRank case-study

Diego Piccinotti*, Edoardo Ramalli*, Alberto Parravicini, Rolando Brondolinf, Marco SantambrogioT
Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano
Milano, Italy
*{diego.piccinotti, edoardo.ramalli} @mail.polimi.it
T{alberto.parravicini, rolando.brondolin, marco.santambrogio } @polimi.it

Abstract—Graph ranking algorithms, such as PageRank, are
widely used in a number of real-world applications like web
search. As the size of the graphs on which these algorithms
are applied gets bigger and bigger, it is necessary to devise
powerful and flexible techniques to accelerate and parallelize the
computation, both at software and hardware level. Leveraging
GPUs is a promising direction thanks to their highly parallel
computing capabilities, but execution time is often hampered by
write conflicts. In this paper, we present a solution to handle
write conflicts in highly parallel computations on GPU, and
show how this technique can effectively be used to accelerate
the computation of PageRank by a factor of 5x, with respect
to a baseline in which conflicts are not handled. Our solution
is implemented at software level, and doesn’t require specific
hardware resources.

Index Terms—Graph Algorithms, GPU, Atomic Addition,
PageRank

I. INTRODUCTION

Graphs represent a powerful tool to model many real
world scenarios, including social, biological and communi-
cation networks. Due to their power, great effort has been
devoted to research graphs algorithms, which allow to extract
informations stored (implicitly or explicitly) in the graph in
a complete and efficient way. Among the different classes
of graph algorithms, a very important spot is occupied by
ranking algorithms. Ranking algorithms, such as PageRank
or Closeness Centrality, sort the vertices of a graph based on
one or more importance criteria, and find applications in fields
such as web search and ranking analysis, for instance in sport
players ranking [1]. As graphs can be represented as sparse
matrices [2], it is common to reformulate ranking algorithms
as computations on matrices. This representations enable a
natural parallelization of the computation, and significantly
benefit from the hardware acceleration provided by the na-
tive Single Instruction, Multiple Data (SIMD) architecture of
devices such as Graphics Processing Units (GPUs).

Computation on GPUs is usually split over multiple threads,
which represent a fragment of code being executed inde-
pendently to perform a well defined task. Parallel matrix
computation requires different threads to work on the same
data simultaneously, but when threads need to concurrently
update data shared among them, multiple data conflicts, such
as Write-After-Write (WAW) or Write-After-Read (WAR) con-

flict, may arise. Furthermore, in ranking applications, rankings
are usually normalized and should add up to 1. This introduces
the need for floating point arithmetic operations, which lack
commutative property due to machine precision errors. Non-
commutativity becomes a problem when performing parallel
calculations on the same data, since the summation of results
on the same memory location happens in a non-repeatable
order. Even worse, rounding error introduced by floating point
operations accumulates over iterations and, when analyzing
large graphs, can disrupt the correctness of results and prevent
algorithms’ termination.

However, some of the parallel summation techniques orig-
inally developed for integer arithmetic (which does not suffer
from precision errors) could be applied, with some modifica-
tion, to floating point numbers. We analyzed the applicability
of interleaved reduction of arrays using warp atomic methods',
which currently work for integers, and developed a solution
to the accumulating error generated by reduction methods.

The contribution of this work are as follow:

o A methodology to systematically handle write conflicts
at software level, without explicit thread synchronization
or serialization of write operations. We show that our
approach can successfully be applied to summation of
partial results on the same memory location, even when
dedicated hardware solutions are not present.

« We evaluate our methodology through a case-study based
on PageRank, a well-known graph ranking algorithm.
We show that write conflicts that would appear during
the matrix multiplication phase of the computation are
correctly handled, and we are able to outperform a
baseline from the point of view of execution time.

The technique presented in this work could be successfully
applied also to distributed systems, to sum data coming
from different nodes: when designing the distribution control
application, the architecture of the distributed system is often
unknown before deployment, so our proposed solution, being
hardware independent, could offer an alternative to checking
the presence of specific hardware, and allow a better code
portability.

Thttps://devblogs.nvidia.com/faster- parallel-reductions-kepler/

II. STATE OF THE ART

In this work, we focus on a practical case-study, and
analyse how write conflicts impact the performance of a GPU
implementation of PageRank, arguably the most well known
graph ranking algorithm. Developed by Larry Page and Sergej
Brin, PageRank assign a score to webpages, on the assumption
that information on the web can be ranked based on human
interest and attention devoted to it [3]. PageRank is compared
by the authors to an idealized random web surfer, and is able to
efficiently compute large numbers of page rankings, showing
good results in terms of scalability over the number of pages.
The original formulation is based on a recursive expression,
and PageRank values are computed in an iterative fashion by
taking into account the ranking of the pages linked to the page
it is currently computing.

Later works have introduced a matrix formulation of PageR-
ank [4] [5] based on power iteration, which allows to speed
up the computation by means of parallelization. Matrix formu-
lations well fit SIMD-capable devices, like GPUs, combined
with data compression techniques (like Compressed Sparse
Row (CSR) [6]) which allow to overcome memory limitations
of such devices [7].

Another approach that has been explored is the simulation of
random surfing to visit the web network graph. This approach
highly benefits from distribution over multiple nodes [8] and
the usage of multiple GPUs as shown by Rungsawang and
Manaskasemsak [9].

The de-facto standard for GPU programming is considered
to be the Compute Unified Device Architecture (CUDA)
framework?. This framework enables the use of compute capa-
bilities of NVIDIA’s graphic cards to perform general purpose
computation. SIMD capabilities of graphics processors are
exploited to perform fast matrix manipulation, which is core
to many graph algorithms as showed by Harish et al. [10].

Parallel computing offers advantages in terms of perfor-
mance but, on the other hand, during parallel computations
data can be shared among threads and this causes read and
write conflicts that need to be properly managed to preserve
data consistency. Francy and Lipasti’s work on this topic [11]
highlights that GPUs do not benefit from advanced atomic
operation techniques that are found on board in modern
Central Processing Units (CPUs) and that specific techniques
need to be designed to find a way around this performance-
crucial issue.

III. PROBLEM DESCRIPTION

The computation of PageRank simulates an idealized ran-
dom web surfer who explore the web through web links
from the page he is currently surfing. PageRank weights the
links between pages by the importance of the referencing
page, assuming that its PageRank value is equally split among
outwards links.

The PageRank algorithm nicely fits SIMD architectures, as
it can be defined with a matrix formulation® of form

Zhttps://developer.nvidia.com/cuda-toolkit
3www.dsi.unive.it/~calpar/New_HPC_course/AA12-13/project12-13.pdf

Pii1=((1— d)E +d-AT)Py
V]
where Py represents the PageRank vector at iteration & (i.e.
the vector that contains the PageRank score of each vertex),
|V| is the number of vertices/web-pages, d is the damping
factor (which represents the probability of continuing surfing
on the current link chain, instead of jumping to a random page)
and E is a square matrix of size |V| x | V] filled with ones.
Finally, A is the transition probability matrix, defined as

(D

A=D1'A)

A is the | V| x| V| adjacency matrix, containing 1 in position
{i,j} when there is a directed edge between vertex i and
vertex j, otherwise 0. D is a |[V| x |V| diagonal matrix,
containing for each element of the diagonal the out-degree,
i.e. the number of outward edges for the corresponding vertex.

Starting from this formulation, some tweaks can be applied
to simplify the computation. Due to inner product distributiv-
ity, the Py1 expression can be factored as the sum of two
contributions

E -
Pk+1:(1—d)m-Pk+d.AT-Pk

In particular, the term (1 —d)(E/|V]) - Px can be rewritten
by expanding the inner product E - Py as

3)

(1—-d)
VI
Which, since PageRank vector sums to 1 by construction,
leads to

PP 41 PP 411 PV @

5

VI

where (1 — d)/|V| represents a constant quantity, since d
and |'V| are scalar values. This allows to skip the computation
of this contribution at each iteration of the algorithm, being
sufficient to compute this contribution in a pre-processing step.

The most computationally intensive part of PageRank al-
gorithm is the remaining part of the factorization eq. (3).
However, graphs encountered in real-world applications have
a high sparsity degree, meaning that each vertex has only a
handful of in-going or out-going arcs. It is natural to represent
graphs with sparse matrices, encoding only the non-zero links
present in the graph instead of the full adjacency matrix. In
our implementation, we leveraged a CSR representation [6].
By storing the transposed graph as a CSR matrix, it is possible
access the in-neighbours of each vertex in a very efficient way,
as they correspond to the rows of the matrix. As the CSR
representation encodes only non-zero entries of the matrix,
we avoid multiplications of zeroes of A matrix.

A must be a stochastic matrix to ensure the correct termi-
nation of the algorithm. To achieve this, empty rows corre-
sponding to vertices with no out-going edges are filled with

1/|V|, which represents an equal probability of jumping to
any page in the graph when reaching a page not linked to any
other. When transposed, such rows become empty columns.
These empty columns offer a constant contribute to the result
of each Py,1 element when performing the inner product
AT . Py, and their contribution can be computed just once at
the beginning of each iteration.

To compute d - AT - Py we designed an initial GPU
implementation, which exploited dynamic parallelism* (al-
lowed since Kepler architecture on NVIDIA GPUs) using
a child thread per row to compute the new values of the
PageRank vector, by adding partial results. Then, each of
these threads started one child thread per multiplication to
perform. This approach induced heavy synchronization and
control problems which couldn’t be efficiently solved us-
ing CUDA synchronization capabilities, forcing the use of
cudaDeviceSynchronize () to stall the whole GPU and
wait for each single thread to complete its execution. This
approach had poor execution time but presented the advan-
tage of clearly separating the partial result of each row. To
address execution time, we decided to apply warp atomic
reduction techniques' to improve performance of all reductions
in the algorithm’s computation. However, this implementation
provided meaningless final results due to excessive atomic
pressure generated by reduction of large arrays of floating
point values. The atomic pressure caused the increase of
rounding error and prevented us from achieving meaningful
results in the PageRank calculation, as we required a high
precision degree (a convergence error below 107, computed
with L2 norm) for our intended application.

Without the possibility of speeding up, and to avoid syn-
chronizing the whole GPU, we dropped the dynamic par-
allelism approach. We then proceeded to modify the data
structure to keep separation of the data belonging to each row,
introducing a bookkeeping vector with same size as the data
vector and containing in each position the corresponding row
of the value in the data vector. Thanks to the bookkeeping
vector, we are able to exploit the CSR representation of the
graph, and access the in-neighbours of a vertex in a simple
and efficient way. The bookkeeping vector allows to know
where to write the partial results, but it causes multiple writes
to the same memory location, which arise memory conflicts.
In the next section, we will detail our proposed approach,
which enables our algorithm to deal with memory conflicts
while preserving the computational benefits introduced by the
additional bookkeping vector.

IV. PROPOSED SOLUTION

To overcome the problem of concurrent writes, we propose
a solution centered around a simple function, implemented
through the CUDA API. This function allows to write a
desired value on a specific memory location, while returning
the previously stored value. By using this approach in a multi-
threaded execution environment, we were able to recognize

“https://devblogs.nvidia.com/cuda-dynamic- parallelism-api- principles/

void floatAtomicAdd (float =addr,
float old = value;
float new;
do {
new = atomicExch (addr) ;
new += old;

float value) {

}

while ((old = atomicExch(addr)) != 0.f);

}

Listing 2. The code of our implementation of the atomic add. Note that any
valued which could have been stored by other threads is preserved by the
instructions in the while loop

when a different thread would jump in and overwrite the value
that was just stored, thus allowing to keep repeating the write
but without any disruption of the values from other threads.
This approach allowed us to avoid forcing explicit thread
synchronization or the use of a semaphore-like structure.

The proposed solution has been implemented in C++11
and CUDA 9.0, and runs on NVIDIA GPUs. We remark that
our implementation doesn’t require explicit synchronization
between participating threads, allowing for further independent
computations to be started on the GPU.

We implemented a function that, when treated as a black
box, behaves as an atomic addition of a value to a memory
location. In other words, the user perceives the concurrent
access as atomic, leaving to the software the managing of
conflicts in writing the data. Our implementation exploits the
atomicExch C library function (whose signature is shown
in listing 1) to write the new data to the memory location,
while returning the old data stored at the pointed address.

’float atomicExch (float xaddress, float val);

Listing 1. Signature of the core function needed for our implementation.
The function writes value at address specified and returns the previous
stored value

This informs us on the presence of previously written data,
which shall be stored and added to the data we want to add.
The main idea is to initially write O to the memory location,
store any previous data and sum it to the data we intend to
write. Then, we perform again an at omicExch with the new
data (sum of old data and the value we desire to add), and
check if the returned value is 0. There are two possible cases:
either the returned value is 0, which means we have been the
last thread to write on that address and we can terminate, or it
is something else, which means that another thread managed
to write that location before we could perform the second
atomicExch. In the latter case, we must start looping and
repeating the above steps until a 0 is returned. Obtaining a 0
as output value means that we successfully added our desired
value to the location without losing any of the other threads’
contributions. The code that implements this pattern is shown
in listing 2.

V. EXPERIMENTAL EVALUATION

To verify the effectiveness of our solution in the acceleration
of the PageRank computation, we measured the execution time
of two variants of the algorithm. The first variant doesn’t

TABLE I
EXEC. TIME OF A BASELINE VERSION OF PAGERANK AND OF OUR
OPTIMIZED IMPLEMENTATION

Implementation Exec. Time (sec.) Variance = Num. Iterations
Baseline 30 0.339 34
Optimized 6 8.80E-4 34

Times given in seconds. Convergence with error 106

use any mechanism to avoid write conflict, and is used as
a baseline. The second variant uses the techniques presented
in listing 2.

In our experiments, we simulate the computation of PageR-
ank values on a graph created from a subset of DBpedia 2016—
10°. DBpedia contains the same information as Wikipedia,
expressed using the Resource Description Framework (RDF)
format, from which it is easy to create a graph that represents
the links between pages in Wikipedia. Our evaluation graph
contains all the pages in Wikipedia, corresponding to 12
million vertices. We consider only a subset of the edges due to
memory constraints on the GPUs at our disposal, resulting in
about 50 million links. The calculation was carried out using
a GTX 960, which concluded the calculation in 34 iterations
in 30 seconds. The time measured goes between the first CPU
call to the kernel to the moment the data returns in CPU. The
initial data transfer is not considered, while we consider the
final transfer of PageRank values from device to host.

In the baseline implementation, to carry out the matrix
calculation of the PageRank multiplication, for each row of the
PageRank vector a thread is launched which in turn launches
other threads that deal with the multiplication of the data
that really influences (non-zero elements of the matrix) the
value of that particular PageRank position. This information
is easily obtained from the CSR representation. This kind of
configuration creates conflicts when writing the results, giving
rise to the need of synchronizing all the threads during the
computation.

Our solution solves this issue: we guarantee data consistency
by repeatedly trying to write in the desired memory location,
taking care not to lose the work done by other threads. This
allowed us to reduce the convergence time of the PageRank
algorithm from the execution time of the baseline code of
about 30 seconds to about 6 seconds. In both cases we use
as convergence criterion a threshold of 10~°, measured as the
difference of L2 norm of the PageRank vector between two
successive iterations. Results are summarized in table I.

We also performed an additional test aimed at stressing the
concurrent write to the same memory location by increasing
the number of parallel threads that perform a given operation.
In this test, we artificially compute an increasing size addition
operation on a single memory location, from a minimum of
2 to a maximum of 1024 threads that concurrently try to
write. The total number of threads in each test is obtained

Shttps://wiki.dbpedia.org/develop/datasets/downloads-2016- 10

Concurrent summation on
same memory location

0.14
0.12
0.10
0.08
0.06
0.04
0.02

Time (ms)

1024
512

5 k
’Qf“greads per Bloc

Fig. 1. Time required for concurrent summation on same memory location, as
function of the number of concurrent accesses. The highlighted tridimensional
lines show results for a fixed data size. Decreasing the number of blocks
results in higher execution time, due to the larger number of conflicts caused
by threads belonging to the same block.

Impact of thread subdivision
on concurrent summation

0.12 === 1 Blocks ="
=== 2 Blocks _,——”
010 4 Blocks ol
é 8 Blocks ,/,
E 008 e _
S—% /, pmmm———————
-
= 0.06 7 ms
o=
0.04 g%
r
F
0.02
2 256 512 1024

Total Number of Concurrent Threads

Fig. 2. Time required for concurrent summation on same memory location,
as function of the number of concurrent accesses. Dividing the same number
of threads across multiple blocks is highly beneficial to the execution time:
1024 threads divided across 8 blocks, instead of a single block, complete the
computation more than twice as fast

by multiplying the number of blocks with the number of
threads per block. Therefore a single test case starts a number
of threads defined by the previous relation and measures the
elapsed time between the start and ending of the computation
of the thread of each task. The final execution time of a given
configuration is obtained by averaging the execution time of
100 runs. The number of blocks chosen for the test ranges
from 1 to 8. The number of threads per block, instead, ranges
along powers of two from 2 to 1024, which is the maximum
number of threads per block allowed by the GPU architecture.
Results are shown in fig. 1 and fig. 2. The highlighted lines

represent computations done with a fixed input data size. It can
be seen how changing the number of threads per block can
have a significant impact on the overall execution time. The
effect becomes more pronounced as the data size increases:
using 8 blocks provides a speedup up to 3x, compared to using
a single block that having roughly the same total number of
concurrent threads.

VI. CONCLUSION

In this work, we have shown a software-based technique
to prevent write conflicts in an implementation of PageRank.
Our implementation is able to outperform a simple baseline in
which conflicts are present, and can easily be applied to other
algorithms. Even though threads try to sum the same data in an
unordered way, it is unlikely to have more than a few threads
trying to write to the same location, due to the sparseness of
the connections in the graph. For this reason, and since our
methodology does not require additional dedicated hardware
solutions, we believe that it could represent a valid solution
to the problem of concurrent adds in sparse graphs algorithms
computation.

REFERENCES

[1] L. Zack, R. Lamb, and S. Ball, “An application of googles pagerank to
nfl rankings,” Involve, vol. 4, 12 2012.

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

(11]

J. Kepner, P. Aaltonen, D. Bader, A. Bulug, F. Franchetti, J. Gilbert,
D. Hutchison, M. Kumar, A. Lumsdaine, H. Meyerhenke et al., “Math-
ematical foundations of the graphblas,” in 2016 IEEE High Performance
Extreme Computing Conference (HPEC). 1EEE, 2016, pp. 1-9.

L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web,” 1998.

M. Franceschet, “Pagerank: Standing on the shoulders of giants,” Com-
munications of the ACM, 2011.

C. D. Meyer and A. N. Langville, “Deeper inside pagerank,” Internet
Mathematics, vol. 1, no. 3, pp. 335-380, 2003.

W. E. Tinney and J. W. Walker, “Direct solutions of sparse network
equations by optimally ordered triangular factorization,” Proceedings of
the IEEE, vol. 55, pp. 1801 — 1809, 12 1967.

N. T. Duong, Q. A. P. Nguyen, A. T. Nguyen, and H.-D. Nguyen,
“Parallel pagerank computation using gpus,” in Proceedings of the
Third Symposium on Information and Communication Technology, ser.
SoICT ’12. New York, NY, USA: ACM, 2012, pp. 223-230. [Online].
Available: http://doi.acm.org/10.1145/2350716.2350751

G. P. E. U. Atish Das Sarma, Anisur Rahaman Molla, “Fast distributed
pagerank computation,” Theor. Comput. Sci., vol. 561, no. PB, pp.
113-121, 2015. [Online]. Available: http://dx.doi.org/10.1016/j.tcs.2014.
04.003

B. Manaskasemsak and A. Rungsawang, “Parallel pagerank computation
on a gigabit pc cluster,” in Proceedings of the 18th International
Conference on Advanced Information Networking and Applications -
Volume 2, ser. AINA ’04. Washington, DC, USA: IEEE Computer
Society, 2004, pp. 273—. [Online]. Available: http://dl.acm.org/citation.
cfm?id=977394.977506

P. Harish and P. J. Narayanan, “Accelerating large graph algorithms
on the gpu using cuda,” in Proceedings of the 14th International
Conference on High Performance Computing, ser. HiPC’07. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 197-208. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1782174.1782200

S. Franey and M. Lipasti, “Accelerating atomic operations on gpgpus,”
04 2013, pp. 1-8.

