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Abstract—Large-scale eigenvalue computations on sparse ma-
trices are a key component of graph analytics techniques based
on spectral methods. In such applications, an exhaustive com-
putation of all eigenvalues and eigenvectors is impractical and
unnecessary, as spectral methods can retrieve the relevant prop-
erties of enormous graphs using just the eigenvectors associated
with the Top-K largest eigenvalues.

In this work, we propose a hardware-optimized algorithm to
approximate a solution to the Top-K eigenproblem on sparse
matrices representing large graph topologies. We prototype our
algorithm through a custom FPGA hardware design that exploits
HBM, Systolic Architectures, and mixed-precision arithmetic. We
achieve a speedup of 6.22x compared to the highly optimized
ARPACK library running on an 80-thread CPU, while keeping
high accuracy and 49x better power efficiency.

I. INTRODUCTION

Research in information retrieval and recommender systems
has spiked novel interest in spectral methods [1], a class of Ma-
chine Learning algorithms able to detect communities in large
social and e-commerce graphs, and compute the similarity of
graph elements such as users or products [2]. At the core of
many spectral methods lies the Top-K eigenproblem for large-
scale sparse matrices, i.e. the computation of the eigenvectors
associated with the largest eigenvalues (in modulo) of a matrix
that stores only non-zero entries (Figure 1). For example, the
famous Spectral Clustering algorithm boils down to computing
the largest eigenvalues of a sparse matrix representing the
graph topology [3]. Despite the rise of theoretical interests for
spectral methods, little research has focused on improving the
performance and scalability of the Top-K sparse eigenproblem
solvers, making them applicable to large-scale graphs.

Most existing high-performance implementations of eigen-
problem algorithms operate on dense matrices and are com-
pletely unable to process matrices with millions of rows
and columns (each encoding, for example, the user’s friends
in a social network graph) [4]. Even the highly optimized
multi-core implementation of LAPACK requires more than 3
minutes to solve the full eigenproblem on a small graph with
∼ 104 vertices and ∼ 50 · 104 edges on a Xeon 6248, as the
eigenproblem complexity scales at least quadratically with the
number of vertices in the graph. Many implementations that
support sparse matrices, on the other hand, are either forced
to compute all the eigenvalues or require an expensive matrix
inversion before solving the eigenproblem [5].

The need for high-performance Top-K sparse eigenproblem
algorithms goes hand in hand with custom hardware designs
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Fig. 1: Top-K eigencomputation of a graph G, represented as a
sparse matrix. While G can have millions of vertices, we often
need just the Top-K eigenvectors (K = 2 in this example).

that can outperform traditional architectures in raw perfor-
mance and power efficiency, given how applications on-top of
Top-K eigenproblem are mostly encountered in data centers. In
this work, we tackle both problems by presenting a new Top-
K sparse eigensolver whose building blocks are specifically
optimized for high-performance hardware designs.

We introduce a novel algorithm to address the Top-K sparse
eigenproblem and prototype it through a custom hardware
design on an FPGA accelerator card. This is the first FPGA-
based Top-K sparse eigensolver, to the best of our knowledge.
Our algorithm is a 2-step procedure that combines the Lanczos
algorithm (to reduce the problem size) [6] with the Jacobi
algorithm (to compute the final eigencomponents) [7], as
shown in Figure 2. The Lanczos algorithm, often encountered
in Top-K sparse eigensolvers [8], has never been combined
with the Jacobi algorithm. Part of the reason lies in their
different computational bottlenecks: the Lanczos algorithm de-
mands large memory bandwidth, while the Jacobi algorithm is
strongly compute-bound. Our approach exploits the strengths
of FPGA accelerator cards and overcomes the limitations of
traditional architectures in this class of algorithms.

First, the Lanczos algorithm presents a Sparse Matrix-
Vector Multiplication (SpMV) as its main bottleneck, an
extremely memory-intensive computation with indirect and
fully random memory accesses (Figure 2 B ). Optimizing
SpMV requires high peak memory bandwidth and fine-grained
control over memory accesses, without passing through the
traditional caching policies of general-purpose architectures.
Our hardware design features an iterative dataflow SpMV with
multiple Compute Units (CUs), leveraging every High Band-
width Memory (HBM) channels through a custom memory
subsystem that efficiently handles indirect memory accesses.



Then, we introduce a Systolic Array (SA) design for the
Jacobi eigenvalue algorithm, a computationally-intensive op-
eration that operates on reduced-size inputs (K×K) (Figure 2
D ). The Jacobi algorithm maps naturally to a SA that ensures
O(log(K)) convergence, while traditional architectures do
not ensure the same degree of performance. CPUs cannot
guarantee that all the data are kept in L1 cache and are unlikely
to have enough floating-point arithmetic units to parallelize the
computation. This results in Ω(K2) computational complexity
and execution times more than 50 times higher than a FPGA
(Section V). Instead, GPUs cannot fill all their Stream Proces-
sors, as the input size is much smaller than what is required
to utilize the GPU parallelism fully [9].

Moreover, our FPGA-based hardware design employs
highly-optimized mixed-precision arithmetic, partially replac-
ing traditional floating-point computations with faster fixed-
precision arithmetic. While high numerical accuracy is usually
demanded in eigenproblem algorithms, we employ fixed-
precision arithmetic in parts of the design that are not critical
to the overall accuracy and resort to floating-point arithmetic
when required to guarantee precise results.

In summary, we present the following contributions:
• A novel algorithm for approximate resolution of large-

scale Top-K sparse eigenproblems (Section III), opti-
mized for custom hardware designs.

• A modular mixed-precision FPGA design for our algo-
rithm that efficiently exploits the available programmable
logic and the bandwidth of DDR and HBM (Section IV).

• A performance evaluation of our Top-K eigendecompo-
sition algorithm against the multi-core ARPACK CPU
library, showing a speedup of 6.22x and a power effi-
ciency gain of 49x, with a reconstruction error due to
mixed-precision arithmetic as good as 10−3 (Section V).

II. RELATED WORK

To the best of our knowledge, no prior work optimizes Top-
K sparse eigenproblem with custom FPGA hardware designs.

The most well-known large-scale Top-K sparse eigenprob-
lem solver on CPU is the ARPACK library [10], a multi-core
Fortran library that is also available in SciPy and MATLAB
through thin software wrappers. ARPACK implements the
Implicitly Restarted Arnoldi Method (IRAM), a variation of
the Lanczos algorithm that supports non-Hermitian matrices.
Other sparse eigensolvers provide techniques optimized for
specific domains or matrix types, although none is as common
as ARPACK [11]–[14].

On GPUs, the cuSOLVER [15] library by Nvidia provides
a simple eigensolver based on the shift-inverse method that
retrieves only the largest eigenvalue and its eigenvector (i.e.
K = 1), which is significantly more limited than the general
Top-K eigenproblem. The nvGRAPH library [16], also devel-
oped by Nvidia, provides an implementation of spectral clus-
tering at whose core lies the Lanczos algorithm. However, the
implementation of the inner Lanczos algorithm is not publicly
available. To the best of our knowledge, there is no publicly
available GPU implementation of the Lanczos algorithm that
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Fig. 2: Steps of our novel Top-K sparse eigenproblem solver,
which combines the Lanczos algorithm with a Systolic Array
formulation for the Jacobi eigenvalue algorithm.

can solve large scale sparse eigenproblems required by spectral
methods. The MAGMA library [17] solves the Top-K sparse
eigenproblem through the alternative LOBPCG algorithm [5],
which requires multiple iterations (each containing at least
one SpMV) to compute even a single eigenvector, to the
contrary of the Lanczos algorithm. Other GPU-based Top-K
eigensolvers are domain-specific, do not support large-scale
inputs, or do not leverage features of modern GPUs such
as HBM memory or mixed-precision arithmetic [18], [19].
Eigensolvers for dense matrices are more common on GPUs,
as they easily exploit the enormous memory bandwidth of
these architectures: Myllykoski et al. [4] focus on accelerating
the case of dense high-dimensional matrices (around 105 rows)
while Cosnuau [9] operates on multiple small input matrices.
Clearly, none of the techniques that operate on dense matrices
can easily scale to matrices with millions of rows as simply
storing them requires terabytes of memory.

Specialized hardware designs for eigensolvers are limited
to resolving the full eigenproblem on small dense matrices,
through the QR-Householder Decomposition and Jacobi eigen-
value algorithm. Most formulations of the Jacobi algorithm
[20], [21] leverage Systolic Array, a major building block
of high performance domain-specific architectures from their
inception [22] to more recent results [23]–[25]. However,
hardware designs of the Jacobi algorithm based on SA cannot
scale to large matrices, as the resource utilization scales
linearly with the size of the matrix. Implementations of the
QR-Houseolder algorithm face similar problems [26], [27]
as they also leverage systolic architectures, although research
research about resource-efficient designs do exist [28].

III. SOLVING THE TOP-K SPARSE EIGENPROBLEM

Algorithms like Spectral Clustering contain as their core
step a Top-K sparse eigenproblem, i.e. finding eigenvalues
and eigenvectors of sparse matrices representing, for instance,
graph topologies with millions of vertices and edges.

Given a sparse square matrix M ∈ Rn×n and an integer
K � n the goal of the Top-K sparse eigenproblem is
to find the K eigenvalues with the highest magnitude, and
their associated eigenvectors. This is equivalent to computing
the approximate decomposition M ≈ MK = QKΛKQT

K ,
with QK ∈ Rn×K and ΛK ∈ RK×K . QK contains the
eigenvectors, while ΛK is a diagonal matrix containing the



Algorithm 1 Lanczos algorithm for the Top-K eigenvectors

1: function LANCZOS(M,K, v1)
2: β1 ← 0, v0 ← 0N . Initialization
3: for i in 1,K do . Main Lanczos loop
4: if i > 1 then
5: βi ← ‖w′i−1‖2
6: vi ← w′i−1/βi . Compute new Lanczos vector

7: wi ←Mvi . Sparse matrix-vector multiplication
8: αi ← wivi
9: w′i ← wi − αivi − βivi−1

10: Orthogonalize w′i with respect to V
11: . Tridiagonal matrix T and Lanczos vectors V
12: Output {T = [α1, . . . , αK ], [β1, . . . , βK−1]}
13: Output V = [v1, . . . , vK ]

eigenvalues. Indeed, computing all the n eigenvalues of the
matrix is intractable for large matrices and redundant for many
applications that require only a handful of eigencomponents.
For example, Spectral Clustering and many of its variations
rely only on the Top-K eigenvectors, with K rarely above∼ 10.

In this work, we propose a novel algorithm to solve the Top-
K sparse eigenproblem, combining the Lanczos algorithm and
the Jacobi eigenvalue algorithm. Our technique is particularly
suited for highly optimized and modular hardware designs.
The first phase leverages the Lanczos algorithm, taking as
input the original matrix M, the number of desired eigencom-
ponents K and an L2-normalized random vector v1 ∈ Rn,
initialized with values equal to 1/n2. The Lanczos algorithm
outputs a K ×K symmetric tridiagonal matrix T (Figure 3)
and a set of orthogonal Lanczos vectors V ∈ RK×n. As second
step, we apply the Jacobi eigenvalue algorithm to T . This
algorithm transforms T into a diagonal matrix containing its
eigenvalues, and returns a matrix V with the eigenvectors
of T . Each eigenvalue λ of T is also an eigenvalue of the
original matrix M. Moreover, if x is the eigenvector of T
associated to λ, then Vx is the eigenvector of M associated
to λ. MK can be obtained as MK =(VV)T (VV)T , although
many applications in spectral analysis only require the Top-K
eigenvalues and eigenvectors of M instead of retrieving MK .

A. The Lanczos Algorithm

The Lanczos algorithm retrieves the Top-K eigencompo-
nents of a matrix and is often employed as a building block


α1 β1 0 0 0
β1 α2 β2 0 0
0 β2 α3 β3 0
0 0 β3 α4 β4
0 0 0 β4 α5


Fig. 3: Example of (5 × 5) tridiagonal matrix, obtained as
output of the Lanczos algorithm for K = 5.

Algorithm 2 Jacobi eigenvalue algorithm with Systolic Arrays

1: function JACOBI(T )
2: V← 1K . Identity matrix of size K ×K
3: repeat
4: for i in 1,K/2 do . Diagonal CU
5: pii ← T [2i : 2i+ 1, 2i : 2i+ 1]

6: θi ← 1
2 arctan 2β

α−δ
7: Rotate pii . Full equation in Figure 4a
8: Propagate ci and si
9: for j in 1,K/2− 2 do . Offdiagonal CU

10: i← j + 1

11: Receive ci, cj , si, sj from pii, pjj
12: pij ← T [2i : 2i+ 1, 2j : 2j + 1]

13: Rotate pij . Full equation in Figure 4b
14: for i in 1,K/2 do . Eigenvector CU
15: for j in 1,K/2 do
16: vij ← V[2i : 2i+ 1, 2j : 2j + 1]

17: Receive cj , sj from pjj
18: Rotate vij . Full equation in Figure 4c
19: Permute rows and columns of T and V . Figure 5
20: until T becomes diagonal
21: Output T . Eigenvalues of the input T
22: Output V . Eigenvectors of the input T

of large-scale eigenproblem algorithms [10], [29], [30]. The
K × K output tridiagonal matrix T is significantly smaller
than the input (K � n) and also simpler in structure, as
elements outside of the band enclosing the main diagonal and
the ones immediately above and below are zero. Pseudo-code
of the algorithm is provided in Algorithm 1. For each of the
K iterations, it computes a Lanczos vector vi by normalizing
w′i−1, obtained at the previous iteration (line 6 and Figure 2A).
From vi, we obtain w′i by projecting the matrix M into vi (line
7 and Figure 2B), followed by an orthogonalization (lines 8 to
10 and Figure 2C). The algorithm is highly efficient as each
vector vi is computed in a single iteration, and K � n.

The Lanczos algorithm is particularly efficient on sparse
matrices, as its most expensive operation is an iterative SpMV,
bounding its computational complexity to O(K · E), with
E being the number of non zero elements of M. In our
hardware design, we optimize the memory-intensive SpMV
computation through multiple independent CUs, so that we
can take advantage of all the available 32 HBM channels of
a Xilinx Alveo U280 FPGA accelerator card (Section IV-B).

This algorithm is prone to numerical instability as the
Lanczos vectors V can quickly lose pairwise orthogonality if
K is very large. To prevent instability, we normalize the input
matrix in Frobenius norm as eigencomponents are invariant to
constant scaling: values of the matrix are in the range (−1, 1),
which implies that eigenvalues and eigenvectors are also in
the range (−1, 1). This property enables the use of fixed-
point arithmetic to improve performance and reduce resource



[
ci si
−si ci

] [
α β
γ δ

] [
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]
=
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α′ 0
0 δ′

]
(a) Operations for the Diagonal Processor pii (Figure 5A).[
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(b) Operations for the Offdiagonal Processor pij (Figure 5C).[
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(c) Operations for the Eigenvector Processor pij (Figure 5D).

Fig. 4: Operations performed by different processors in the
Jacobi eigenvalue Systolic Array architecture. Values ci and
si indicate cos(θi) and sin(θi), with θi = 1

2 arctan 2β
α−δ .

usage (Section V-C). We further improve numerical stability
by adopting a version of the algorithm that reorders operations
[31] and reorthogonalizes Lanczos vectors in each iteration
[32]. Reorthogonalization (Algorithm 1, line 10) requires
K2/2 more operations of cost O(n), increasing complexity
to O(K(E + nK2/2)). We also introduce the option of
performing reorthogonalization every 2 iterations, for a lower
overhead of O(n(K/2)2/2), with negligible accuracy loss
(Section V-C). In practice, execution time is usually dominated
by SpMV making reorthogonalization a viable option.

B. The Jacobi Eigenvalue Algorithm

The Jacobi eigenvalue algorithm computes the eigenvalues
and eigenvectors of a dense symmetric real matrix. It is an
iterative procedure that performs rotations on square subma-
trices. Each iteration is highly computationally-intensive as
it contains Ω(K2) trigonometric operations. However, this
algorithm is particularly well suited to solve eigenproblems on
small tridiagonal matrices. As many matrix values are zero and
cannot introduce data-dependencies in rotations, it is possible
to parallelize the entire computation at hardware-level.

The Jacobi eigenvalue algorithm has sought many for-
mulations to improve either its parallelism or its resource
utilization. The best-known formulation of the algorithm was
proposed by Brent and Luk [33] and has been the standard for
implementing the algorithm on FPGA to this day [20], [21].
Our design improves this formulation with a more resource-
efficient procedure for interchanging rows and columns, and
its structure is shown in Figure 5.

We employ a SA design that maps the input matrix as 2×2
submatrices to K2/4 adjacent processors (or CU) (Figure 5,
A ). The systolic architecture propagates the rotation angles
B and the values stored in each processors E .

Starting from T , the algorithm set to zero K/2 off-diagonal
entries per iteration by using rotations. Diagonal processors
annihilate β and γ components (Algorithm 2, line 7) with a
rotation of angle θ. This angle is propagated (line 8) to the off-
diagonal processor (line 9), and to the eigenvector processor
that applies the same rotation to the identity matrix (line 14).
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Fig. 5: Steps of the Jacobi eigenvalues computation using
Systolic Arrays. Each Processing Element (PE) pij holds 4
values α, β, γ, δ, and θ = 1
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To ensure convergence, diagonal CUs are fed non-zero
elements at each iteration in the β and γ position. New non-
zero elements are provided to the diagonal CUs by swapping
rows and columns, since eigencomponents are invariant to
linear combinations. We improve the swap procedures of Brent
and Luk [33] by swapping vectors in reverse, obtaining the
same results with fewer resources (Section IV-C2).

The SA formulation allows performing each iteration of the
algorithm in constant time, enabling complexity equal to the
number of iterations, O(log(K)), instead of having cost above
Ω(K2 · log(K)) due to the matrix multiplications [33].

IV. THE PROPOSED HARDWARE DESIGN

This section presents our custom FPGA-based hardware
design for the Top-K sparse eigenproblem algorithm pre-
viously introduced. The logical division between the Lanc-
zos and Jacobi algorithms is also present in the hardware
implementation. Our hardware design is composed of two
macro-areas that are mapped to separate reconfigurable Super
Logic Regions (SLRs) of the FPGA, to provide more efficient
resource utilization and higher flexibility in terms of clock
frequency, memory interfaces, and reconfigurability. Figure 6
shows a high level view of our FPGA design. We prototyped
our hardware design on an Alveo U280 accelerator card with
HBM2 and DDR4 memory. The Lanczos algorithm, being a
memory-intensive computation, is mapped to SLR0, which
provides direct access to all the HBM2 memory interfaces on
the accelerator card. SLR1 and SLR2 hosts different replicas
of the IP core implementing the Jacobi algorithm, optimized
for different numbers of eigenvectors K.

A. Lanczos Hardware Design
The left part of Figure 6 highlights the Lanczos algorithm

hardware design components. Partitions of the sparse input
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Fig. 6: High-level architecture of our Top-K Sparse Eigencom-
putation FPGA design. We highlight interconnections between
FPGA computational units and the FPGA board memory.

matrix are read from HBM A and distributed to 5 parallel
SpMV CUs B (Algorithm 1, line 7). Partial results from every
partition are merged C into a single vector to be used by the
remaining linear operations D (lines 5, 6, 8, 9). Operations
are then repeated K times to produce the 3 · K − 2 values
in the tridiagonal matrix T and the K Lanczos vectors in V ,
stored in DDR memory.

B. SpMV Hardware Design

The biggest bottleneck in the Lanczos algorithm is an
iterative SpMV computation (Algorithm 1, line 7). While
other computations in the Lanczos algorithm are relatively
straightforward to optimize and parallelize, SpMV is well-
known for being a complex, memory-intensive computation
that presents indirect and random memory accesses [34].
Although significant research has been made into developing
high-performance SpMV implementations on FPGA [35]–
[38], the Lanczos algorithm introduces circumstances that
prevents us from using an out-of-the-box FPGA SpMV imple-
mentation. Our SpMV design must perform multiple iterations
without communication from device to host, as data-transfer
and synchronizations would hinder performance. Then, the
SpMV must be easily partitioned and replicated to provide
flexibility over the hardware resources. Finally, we require
access to multiple HBM channels to maximize the overall
memory bandwidth achieved in the computation.

Our final SpMV design extends and improves the one
recently proposed by Parravicini et al. [39] in the context
of graph ranking algorithms, which are also variations of the
power iteration method as in the case of the Lanczos algorithm.
Below we introduce how we leveraged HBM memory in our
SpMV design to provide better scalability and performance.

1) SpMV Dataflow Architecture: As SpMV is an extremely
memory-intensive computation, a good SpMV implementation
should make efficient use of the memory bandwidth made
available by the underlying hardware. Figure 7 shows the
structure of one of our SpMV CUs. We employ a streaming
dataflow SpMV design that reads the input sparse matrix
stored using the Coordinate (COO) format. In the COO format,
non-zero entries of the matrix are stored using 3 32-bits
values: the row and column index in the matrix and the value
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Fig. 7: Architecture of one iterative SpMV CU. Each CU
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memory subsystem after each iteration.

itself. Compared to other sparse matrix data-layouts, such as
Compressed Sparse Row (CSR), the COO format does not
present indirect data accesses that can severely reduce the
opportunities for a pipelined design. The Matrix Fetch Unit
in each CU is connected to a single HBM channel and reads,
for each clock cycle, a packet of 512 bits containing 5 non-zero
matrix entries A . Memory transactions happen in continuous
bursts of maximum AXI4 length (256 beats): each CU reads
the matrix at the maximum bandwidth offered by the HBM
channel (14.37 GB/s, for a total of 71.87 GB/s using 5 CU).
For each of the 5 non-zero values in each COO packet, the
Dense Vector Fetch Unit performs a random access to the
SpMV dense vector B . This step is critical to the overall
SpMV performance: compared to [39], we leverage HBM in-
stead of UltraRAM (URAM), achieving better scalability and
performance. We detail our Dense Vector Memory Subsystem
below and in Figure 8. The Aggregation Unit sums results
within a single data-packet that refers to the same matrix
column C . A Write-Back Finite-State Machine stores results
of each CU to HBM D . Each write-transaction is a 512-bits
data-packet containing up to 15 values, each referring to a
single matrix row. Compared to [39] we reduce the number of
write transactions by 3 times the average number of non-zeros
per row. As such, we can store results through the same HBM
channels of the dense vector with no detriment to performance.

Compared to the original SpMV design in [39], we support
multiple SpMV CUs that operate on partitions on the COO
input matrix, created by assigning an equal number of rows to
each CU. We employ up to 5 SpMV CUs (Figure 6). While in
principle it is possible to place more CUs, our current design
is limited by the hardened AXI switch in the Alveo U280
that prevents the use of more than 32 AXI master channels to
HBM, which we fully employ [40]. Each SpMV CU compute
a portion of the output vector: partial results are aggregated
by the Merge Unit (Figure 6 C ) and replicated across HBM
channels to use them in the following iteration.
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2) SpMV Dense Vector Memory Subsystem: Each SpMV
CU processes 5 non-zero matrix entries per clock cycle, and
for each non-zero entry it must perform a random access on
a dense vector of size n (in our case, the Lanczos vector vi
at iteration i). As each AXI master channel can handle only
one read transaction per cycle, we need to replicate the dense
vector 5 times, similarly to [41]. The hardened AXI switch in
the Alveo U280 renders highly inefficient to attach multiple
AXI master channels to the same HBM bank: only 32 AXI
master channels are available, and small memory transactions
(32 bits) have the same performance as larger transactions,
preventing sustained bandwidth sharing [42]–[44]. We solve
the issue by leveraging the abundant HBM memory on the
Alveo U280, and replicating the dense vector 5 times for
each CU, as in Figure 8. A more flexible AXI switch would
enable multiple 32-bits read transactions on the same HBM
channel in a single clock cycle, reducing the demand for
data replication. Compared to [39], our HBM-based memory
subsystem marks a significant improvement, as we avoid
URAM to store the intermediate dense vector and results.
Instead of being limited by the FPGA’s 90 MB of URAM,
we store the dense vector using individual HBM banks with
250 MB of capacity, allowing computations on matrices with
up to 62.4 million rows. Moreover, high URAM consumption
significantly limits the maximum attainable frequency, while
we do not incur in this limitation (Table I).

C. Jacobi Systolic Array Design

The Jacobi eigenvalue algorithm is very computationally
intensive. Although it processes a small input of size K ×K,
unoptimized implementations still require a significant amount
of time due to a large number of dense matrix multiplications.

Moreover, its convergence rate is implementation-dependent
and as high as O(K2). By adopting a SA-based design,
we overcome both issues. By parallelizing the computation
through a SA formulation and performing rotations concur-
rently, we decrease the number of iterations for convergence
to O(log(K)). Rotations, equivalent to multiplications on 2×2
submatrices, are unrolled and performed in constant time.

Our design for the Jacobi algorithm is optimized to compute
up to K eigenvalues. While it can compute a lower amount of
eigenvalues without a reconfiguration, we place in the same
FPGA bitstream multiple Jacobi cores optimized for specific
K (4, 8, 16, etc.). We can configure both SLR1 and SLR2 with
Jacobi cores to fully utilize the FPGA resources and opening
the doors for independent optimization on specific values of K
by reconfiguring individual SLRs. The Lanczos Core on SLR
transfers only the 3K − 2 values of T to the Jacobi cores on
SLR1 and SLR2. We prevent inefficiencies related to inter-
SLR communication by moving data through PLRAM, while
also avoiding the long read-write latency of DDR and HBM.

In practice, the systolic formulation cannot scale beyond
very small matrices (K ≈ 32) due to the large number of
resources required for trigonometric operations in each CU.
While resource utilization has prevented widespread adoption
of the Jacobi algorithm for general eigenproblem resolution,
it is not a limitation for our use case, as we apply the Jacobi
eigenvalue algorithm on small K ×K inputs by design.

On CPU, approaches such as QR factorization are more
common [45], because efficient systolic array formulations of
the Jacobi algorithm require full control over cache eviction
policies. Moreover, even modern CPUs lack enough floating-
point arithmetic units to perform the operations required for
an iteration at once: even for a small K such as K = 8, the
Jacobi algorithm computes 16 trigonometric operations and
about 800 floating-point multiplications per iteration.

Instead, we leverage the abundant hardware resources of our
FPGA platform to perform all these operations concurrently,
making it the optimal choice for our Jacobi SA design.

1) Diagonal And Offdiagonal CU: Diagonal CU (Algo-
rithm 2, line 4) annihilate elements immediately outside the
diagonal via a matrix rotation. Although the rotation angle
is arbitrary, the fastest convergence is achieved by setting
θ = 1

2 arctan 2β
α−δ , which eliminates the β and γ components

(Figure 4a). We efficiently compute the components of the
rotation matrix via Taylor series expansion. Even an order-3
approximation provides excellent accuracy (∼ 10−6 at ±π4 ),
using significantly fewer DSPs and BRAMs than the CORDIC
core. Rotation on the diagonal (Figure 5 A ) are performed by
K/2 parallel cores, propagating rotation values B in constant
time to the Offdiagonal CU (Algorithm 2, line 9). As each CUs
holds only 4 elements, matrix multiplications are fully unrolled
and performed in constant time. Eigenvectors (Algorithm 2,
line 14) D are computed in parallel to the rotation of the
Offdiagonal CU C as they only require rotation values.

2) Row/Column Interchange: Each CU has 8 connections
to propagate input and output values of α, β, γ, δ values to
adjacent processors, in addition to communicating the rotation



TABLE I: Resource usage and clock frequency in our FPGA
hardware design, divided by algorithm.

Algorithm SLR LUT FF BRAM URAM DSP Clock (MHz)

Lanczos SLR0 42% 13% 15% 0% 16% 225
Jacobi SLR1 40% 42% 0% 0% 68% 225
Jacobi SLR2 15% 17% 0% 0% 34% 225

Available 1097419 2180971 1812 960 9020

TABLE II: Matrices/graphs in the evaluation, sorted by num-
ber of edges/non-zero entries (in millions). For each matrix,
we report the memory footprint when stored as COO.

ID Name Rows (M) Non-zeros (M) Sparsity (%) Size (GB)

WB-TA wiki-Talk 2.39 5.02 8.79× 10−4 0.06 GB
WB-GO web-Google 0.91 5.11 6.17× 10−4 0.07 GB
WB-BE web-Berkstan 0.69 7.60 1.60× 10−3 0.10 GB
FL Flickr 0.82 9.84 1.46× 10−3 0.13 GB
IT italy osm 6.69 14.02 3.13× 10−5 0.18 GB
PA patents 3.77 14.97 1.05× 10−4 0.19 GB
VL3 venturiLevel3 4.02 16.10 9.96× 10−5 0.21 GB
DE germany osm 11.54 24.73 1.86× 10−5 0.32 GB
ASIA asia osm 11.95 25.42 1.78× 10−5 0.33 GB
RC road central 14.08 33.87 1.71× 10−5 0.43 GB
WK Wikipedia 3.56 45.00 3.55× 10−4 0.60 GB
HT hugetrace-00020 16.00 47.80 1.87× 10−5 0.61 GB
WB wb-edu 9.84 57.15 5.90× 10−5 0.73 GB

value θ. As shown in Figure 5E, each processor pi,j with i and
j 6= (1,K/2) propagates its α and γ values to the β and δ slots
of pi,j+1 and its β and δ values to the α and γ slots of pi,j−1.
Processors in the first column (pi,1) propagate β and δ to to the
α and γ slots of pi,2. Processors pi,K/2 propagate β and δ to
their own α and γ slots. Operations for the column interchange
are symmetrical. As α and γ of pi,1 are never propagated,
more swaps are performed towards lower indices than higher
indices. These additional swaps require K temporary vectors
to store rows that would be overwritten by the swaps. To avoid
wasting resources for these temporary vectors, we execute
operations in reverse, from K/2 to 1. As row/column swaps do
not introduce additional data dependencies, we perform them
in a single clock cycle using FFs.

V. EXPERIMENTAL EVALUATION

To prove that our custom FPGA design is suitable for
solving large-scale Top-K sparse eigenproblems, we compare
it against the popular ARPACK library, measuring how it
compares in terms of execution time, power efficiency, and
accuracy. The multi-threaded ARPACK library [10], a Top-K
sparse eigensolver that employs IRAM, runs on two Intel Xeon
Gold 6248 (80 threads in total) and 384 GB of DRAM using
single-precision floating-point arithmetic. Our eigensolver is
prototyped on a Xilinx Alveo U280 accelerator card equipped
with 8 GB of HBM2 memory, 32GB of DDR4 memory, and
a xcu280-fsvh2892-2L-e FPGA whose resources are
reported in Table I. Results are averaged over 20 runs.

Tests are carried out using a collection of large sparse ma-
trices representing graph topologies, each containing millions
of rows and non-zero entries (Table II). All test matrices come

from the SuiteSparse collection [46]. While our evaluation
is focused on sparse matrices representing graphs, our Top-
K sparse eigenproblem FPGA design is applicable to other
domains such as image analysis [47]–[49].

Resource utilization and clock frequency of our design
are reported in Table I. The Lanczos algorithm and Jacobi
algorithm have similar utilization, with around 20% LUT
utilization each (50% of the available LUTs in each SLR).
Although the SA architecture of the Jacobi algorithm processes
small K × K inputs, it requires the computation of many
trigonometric operations and multiplications (16 and > 800
for K=8) in each iteration. Resource utilization of the Jacobi
algorithm scales quadratically with the number of eigenvalues
K, while the Lanczos algorithm is not affected.

A. Execution Time
We measure the execution time speedup of the FPGA-based

hardware design implementing our Top-K sparse eigenproblem
solver against the CPU baseline and report results in Figure 9.
We are always faster than the baseline, with a geometric
mean speedup of 6.22x, up to 64x for specific graphs. The
speedup is mostly unaffected by K, showing how our design
can efficiently compute many eigenvalues at once. Figure 10A
shows how the time required by our FPGA design to process
a single matrix value is unaffected by the overall graph size,
while the CPU behavior is drastically more unpredictable.

We estimate that the Lanczos dominates the overall ex-
ecution time due to the SpMV computations, taking more
than 99% of the execution time. However, optimizing the
Jacobi algorithm with a SA design is still worth the effort,
compared to running this step on CPU. Figure 10B shows the
speedup of our Jacobi SA design compared to an optimized
C++ CPU implementation: the execution time on CPU grows
quadratically due to repeated matrix multiplications, becoming
a non-negligible part of the execution time for large K.

Our hardware design synthesized at 225 Mhz on the Alveo
U280 accelerator card. A clock frequency beyond 225 Mhz
does not significantly improve performance as SpMV repre-
sents the main computational bottleneck in the computation,
and its performance is bound by HBM bandwidth [43]. Each
SpMV CU processes data at the maximum bandwidth offered
by the HBM channel from which it reads the matrix (14.37
GB/s, for a total of 71.87 GB/s using 5 CU).

B. Power Efficiency
We measured via an external power meter that our FPGA

design consumes about 38W during execution, plus 40W for
the host server. The CPU implementation consumes around
300W during execution. Our FPGA design provides 49x
higher Performance/Watt ratio (24x if accounting for the
FPGA host machine): we provide higher performance without
sacrificing power efficiency, making our design suitable for
repeated computations typical of data center applications.

C. Accuracy Analysis of the Approximate Eigencomputation
The Lanczos algorithm is known to suffer from numerical

instability [31]. To limit this phenomenon, we reorganize the
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Fig. 11: Accuracy of our Top-K sparse eigensolver, in terms
of orthogonality and reconstruction error, for increasing K.

algorithm’s operations as in [31] and apply reorthogonalization
as in [32]. To assess the stability of our design, we measure
the eigenvectors’ pairwise orthogonality and the eigenvector
error norm. Eigenvectors must form an orthonormal basis
and be pairwise orthogonal, i.e. their dot product is 0, or
equivalently their angle is π/2. For each pair of eigenvectors,
we measure the average angle that occurs. Then, if λ is an
eigenvalue of M and v is its associated eigenvector, it must
hold Mv = λv. By measuring the L2 norm of Mv − λv for
all v we evaluate how precise the eigenvector computation
is. Results are reported, for increasing K, in Figure 11,
aggregated on all graphs due to space constraints. Accuracy is

excellent if reorthogonalization is applied every two iterations,
but even without this procedure results are satisfactory. Despite
using fixed-precision arithmetic in the Lanczos algorithm, the
average reconstruction error is below 10−3, and the average
orthogonality is > 89.9 degrees, when applying reorthogo-
nalization every two iterations. Orthogonality is not affected
by K, while the average reconstruction error improves as K
increases. Spectral methods in machine learning applications
use eigenvectors to capture the most important features of their
input and do not usually require the same degree of precision
as other engineering applications. Reorthogonalization adds
an overhead up to O(nK2/2) to the algorithm compared
to Figure 9. On large graphs this overhead is negligible
compared to SpMV, and is a viable option in applications
where maximum accuracy is necessary. Still, our hardware
design can provide excellent accuracy while being significantly
faster than a highly optimized CPU implementation.

VI. CONCLUSION

The computation of the Top-K eigenvalues and eigenvectors
on large graphs represented as sparse matrices is critical
in spectral methods, a class of powerful Machine Learning
algorithms that can extract useful features from graphs. We
solve the Top-K sparse eigenproblem with a new algorithm
that is optimized for reconfigurable hardware designs: in
the first part of the computation, we exploit the enormous
bandwidth of HBM through the Lanczos algorithm, while in
the second part, we introduce a systolic array architecture that
efficiently parallelizes the compute-intensive Jacobi eigenvalue
algorithm. Compared to the popular ARPACK CPU library,
we achieve a geomean speedup of 6.22x on 13 graphs with
millions of vertices, raising the bar for high-performance Top-
K sparse eigensolvers at a large scale.

As future work, we will extend our hardware design to sup-
port non-Hermitian matrices through the Implicitly Restarted
Arnoldi Method. We will also investigate heterogeneous im-
plementations that combine the abundant memory bandwidth
of GPUs for high-performance SpMV with our systolic array
FPGA design for the Jacobi eigenvalue.
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